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Abstract 

Cryogenic Permanent Magnet Undulators (CPMU) are 
currently being developed in some Synchrotron Light 
Sources. Low temperature magnetization hysteresis 
curves cannot be obtained by a simple transformation of 
ambient temperature curves; this requires a specific 
simulation tool. A Monte-Carlo based Permanent Magnet 
Simulator has been developed at the ESRF. In this 
simulator, the magnets can be described as a set of several 
magnetic grains. The model inputs are physical 
parameters such as anisotropy constants, easy-axis 
distribution and coercive field. The orientations of 
magnetic moments are calculated for each grain according 
to an analytical model and optimization methods are used 
for fast computations. Magnetization versus external field 
curves is calculated in a few seconds. The result fits with 
low temperature NdFeB magnetization measurements. 
These curves have been efficiently used to obtain Radia 
material parameters for the CPMU design. 

INTRODUCTION 
Cryogenic Permanent Magnet Undulators have ap-

peared over the last few years [1, 2, 3, 4, and 5]. In these 
insertion devices, low temperature NdFeB permanent 
magnets are used to achieve both a high remanence and a 
high coercive field. 

When the temperature decreases, the remanent ma-
gnetization passes through a maximum. At low 
temperatures, magnetization is reduced by the Spin Re-
orientation Transition phenomenon (SRT) [6, 7]: SRT 
must be taken into account for CPMU designs. 
Magnetization measurements have been taken at several 
temperatures and optimum performances were observed 
for T~150 K. Yet, for a more efficient CPMU design it 
should be worthwhile to develop numerical models for 
low temperature NdFeB magnets. 

Modern permanent magnets are made with sintered 
powders. In these powders each grain has well-known 
magnetic properties, governed by crystal orientation, 
anisotropy constants, defaults, etc. However, there are no 
numerical models at a magnet level (i.e. for a set of 
magnetic grains). The aim of this paper is to develop such 
a model. 

The classic phenomenological model for magnets and 
magnetic grains is first recalled. Then, a Monte-Carlo 
based simulator is built. Few physical parameters, such as 
easy-axis dispersion, anisotropy constants or coercive 
field are used for magnetization calculations. This model 
has applied to the CPMU design. 

NdFeB MAGNET MODEL 

Phenomenological Model 
Powder metallurgy processes are used for high perfor-

mance permanent magnet manufacturing. Bulk magnetic 
materials are reduced to monocrystalline magnetic grains. 
These grains are aligned under a magnetic field during 
powder compaction. The magnet is then sintered at a 
temperature of around 1100°C to provide an optimal re-
manence. A further annealing process (~ 650°C) enables 
the development of the coercivity. The magnetic field 
alignment stage of this process defines the so-called easy-
axis; the magnetization of the magnet is parallel to this 
direction. The standard deviation of the grain symmetry 
axis (so-called c-axis) angular dispersion is about 15 
degrees around the easy-axis. 

The orientations of the grain’s magnetic moments are 
governed by the magnetic anisotropy energy, which tends 
to align the magnetization and the easy-axis, and by the 
Zeeman energy which aligns the magnetization and the 
external magnetic field. The energy of one magnetic 
moment should be expressed as 

θθμ 4
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2
10 sinsin KKE ++⋅−= HM ,        (1) 

where μ0 is the vacuum permeability, M the magneti-
zation, H the applied magnetic field strength, K1 and K2 
the anisotropy constants and θ the angle between the 
magnetization and the c-axis. 

 The coercive field should be derived from equation (1). 
However, the coercive field calculated with this equation 
is one order of magnitude higher than the measured 
coercive field. This is due to anisotropy defaults in the 
magnetic materials [8, 9, and 10]. In our model, we will 
use the coercive field as a phenomenological parameter. 
A linear variation of the coercive field is observed when 
the temperature decreases. 

The evolution of NdFeB anisotropy constants with 
temperature is given in Fig. 1. It appears that K1 constant 
passes trough zero and is negative for T < 130 K. The 
Spin Reorientation Transition is due to this inversion. If 
there is no external field, the angle between the 
magnetization and the c-axis can be easily calculated. For  
reasons of symmetry, magnetic moments are distributed 
on a cone. This results in a reduction of the remanent 
magnetization.  
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Figure 1: Evolution of NdFeB anisotropy constants with 
temperature [7]. 

In a permanent magnet, the overall magnetization 
should be computed as the sum of all the magnetic 
moments. This can be written as 

( ) ( ) ϕθϕθϕθ ddpM S HuM ,,,∫∫= ,        (2) 

where MS is the saturation magnetization, θ and ϕ give the 
orientation of a c-axis, p(θ, ϕ ) is the probability density 
of finding grains with c-axis oriented by θ and ϕ , u(θ, ϕ )  
is a unit vector which gives the orientation of the 
magnetic moment of a grain with c-axis oriented by 
θ  and ϕ  in an external field strength H. 

Magnet Simulator 
A magnet simulator has been developed. Inputs are 

physical parameters such as anisotropy constants, easy-
axis distribution and coercive field.  

At initialization, c-axis are randomly distributed around 
the easy-axis. The angle between c-axis and easy-axis 
follows a Gaussian law with a typical standard deviation 
σ  = 15°. Then, an external magnetic field is applied to 
each grain and the magnetic energy (Eq. 1) is minimized. 
The macroscopic magnetization is calculated as the sum 
of the grain magnetizations (Eq. 2).  

The simulator has been written in object-oriented 
language (C++). The Gradient and Newton methods were 
implemented for fast energy minimization. Downloads 
are available on the ESRF website [11].  

Simulation results are shown in Fig. 2 for an external 
magnetic field parallel to the easy-axis. The results 
correspond well to the magnetic measurements. On the 
simulated curves, one can observe an angular point 
around the coercive field. The measured curves are 
smoother: this difference is due to the non-homogeneous 
demagnetizing field in the magnet sample. 

Figure 3 shows the magnetization versus temperature 
curves at several operating points. In a cryogenic per-
manent magnet undulator, the reverse magnetic field 
strength is in the range 1 T < μ0 H < 1.5 T: the operating 
temperature should be in the range 140 K < T < 180 K. 

 

Figure 2: Parallel magnetic field: simulation results 
(thick line) and measurements (thin line) for a 
Vacuumschmelze Vacodym 764 NdFeB Magnet [4, 12]. 

 

Figure 3: Simulated magnetization vs. temperature curves 
for different values of reverse magnetic field μ0 H (for 
Vacuumschmelze Vacodym 764 NdFeB magnet). 

 

Linear Model 
For a relatively weak external field strength (i.e. below 

the coercive field) and for small field variations, the 
magnetization should be modelized by a linear model: 

( ) χHMM R +=H ,                           (3) 

where MR is the remanent magnetization and χ is the 
magnetic susceptibility tensor. At a first approximation, 
this tensor reduces to a diagonal matrix with eigenvalues 

//χ  and ⊥χ . 
The temperature variation of magnetic susceptibilities 

is shown on Fig. 4. A Mathematica linear model has been 
built from the simulated magnetization and sus-
ceptibilities. This model gives approximate results very 
quickly but is valid for relatively low fields only.  
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Figure 4: Simulated susceptibilities for Neorem 595 
NdFeB Magnet [13]. 

CMPU DESIGN 
The numerical model described in the above section has 

been used for CPMU simulations. The simulation process 
includes: 

• Computation of parallel and transverse M (H ) curves 
at various temperatures, starting for NdFeB 
datasheets. 

• Fitting a Non-Linear Radia model [14, 15] on the 
M (H) curves. 

• Calculation of the peak magnetic field for a given 
undulator geometry, using the Radia software.  

•  Computation of the radiation spectrum with the 
SRW software [16]. 

The undulator geometrical parameters are given in 
Table 1. The peak field and the defection parameter have 
been computed for a commercial NdFeB magnet at 150 K 
and for a reference Sm2Co17 material (Table 2). The 
calculated brilliance is shown in Fig. 5. 

Table 1: Undulator eometrical arameters 

Period 18 mm 

Magnetic Gap 6 mm 

Length 2 m 

Magnets 6.2x50x30 mm3 

Poles 2.8x32x24 mm3 

 
Table 2: Peak magnetic field and deflection. Typ. values 
are computed from a material datasheet and Meas. values 
are computed from measured M (H) curves.  

Material   T [K] BMAX [T] K 

Vacodym 764 Typ. 150 0.97 1.64 

 Meas.  0.98 1.66 

Sm2Co17 
(BR = 1.1 T) 

Typ. 300 0.82 1.38 

Figure 5: SRW simulations for an ESRF low-beta section 
with E = 6 GeV, I = 200 mA, εH = 4 nm, εV = 30 pm, 
βH = 0.5 m and βV = 2.73 m.  

CONCLUSION 
A Monte-Carlo magnet simulator has been developed. 

This model uses physical properties of the magnets. To 
model a grade of NdFeB magnets, one needs few 
parameters: easy-axis dispersion, saturation magnetiza-
tion, coercive field and temperature coefficient. This low 
temperature NdFeB model has been used to simulate a 
cryogenic permanent magnet undulator. The magnetic 
field and the brilliance obtained with this model match 
those computed from measured magnetization curves.  
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