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Abstract

The possibility of transverse displacement of the mag-
nets in the EMMA non-scaling FFAG [1] and the uncon-
ventional size of the accelerator motivate a careful study
of particle behavior within the EMMA ring. The magnetic
field map of the doublet cell is computed using a Finite El-
ement Method solver; particle motion through the field can
then be found by numerical integration. However, by ob-
taining an analytical description of the magnetic field and
using a differential algebra code to integrate the equations
of motion, it is possible to produce a dynamical map in Tay-
lor form. This has the advantage that, after once comput-
ing the dynamical map, multi-turn tracking is far more ef-
ficient than repeatedly performing numerical integrations.
Also, the dynamical map is smaller (in terms of computer
memory) than the full magnetic field map; this should al-
low different configurations of the lattice to be represented
very easily using a set of dynamical maps, with interpola-
tion between the coefficients in different maps.

INTRODUCTION

Particle tracking studies require an accurate model of the
lattice to give reliable results. However, the EMMA mag-
nets are so short that their magnetic field is not accurately
representable with conventional (e.g. hard edged) models.
This paper will be divided into three parts, explaining the
main steps from magnets design to beam dynamics. First,
production of tables of field values (by numerical finite el-
ement solver) is explained. Second, we describe the con-
version of these tables of numerical values into analytical
expressions. Finally, the motion of a particle in the cell will
be simulated by means of dynamical maps.

MAGNETIC FIELD COMPUTATION

The short lengths of magnets in EMMA means that a
3D model is required to describe the magnetic field. The
magnet designs [2] were developed in OPERA [3], which
uses the Finite Element Method (FEM) to solve Maxwell’s
equations for given current and magnetic material distribu-
tions, and provides numerical field values on a grid within
a specified region. We used the same software for this
study, implementing mesh properties and boundary condi-
tions more adapted to particle tracking.
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Each cell within the EMMA ring includes a horizontally
focusing (F) quadrupole magnet, and a horizontally defo-
cusing (D) quadrupole magnet. The magnetic axes of the F
and D quadrupoles are not aligned, so treating the pair as
a single magnetic unit, the usual four-fold symmetry of a
quadrupole is broken. However, symmetry about the plane
of the ring is conserved; thus, computing the upper half of
the model is necessary and sufficient.

The cell is enclosed by non material borders, required
for the FEM solver. Longitudinally, one can link the en-
trance face and the exit face by a periodic condition, since
a cell is a period of the ring. EMMA consists of 42 cells;
therefore, the periodicity condition involves an exit face ro-
tation by an angle 2π/42 to match the following entrance
face (which is parallel to the faces of the magnets in the
following cell). All the elements are aligned with respect
to a straight line of length 394.481mm, which represents
one side of a 42-sided polygon. This polygon is defined so
as to be close to the expected closed orbit of a particle with
energy 15 MeV (the machine is designed to run electrons
between 10 and 20 MeV). The vacuum chamber extends
transversly a few centimetres on each side: simulations of
the magnetic field and the particle motion have to be pre-
cise in this area.

The Finite Element Method is based on the principle that
by solving a set of equations for field values on a finite
number of points (defining a mesh), the field can be de-
termined everywhere by interpolation. The finer the mesh,
the more accurate is the field description, but the longer it
takes to solve the field equations. By steadily increasing the
mesh density and computing the effect on a particle trajec-
tory, one can determine the mesh density required to give a
convergent tracking behavior. Studies have shown from 5
million (5 hours solving ) to 11 million mesh elements (20
hours solving), the output coordinates differ by less than
20 μm. For the present study, this precision is considered
good enough and models based on field solutions with 5
million mesh elements are used.

ANALYTICAL FIELD REPRESENTATION

The values of the field on a 3D cartesian grid with 1 mm
step in all directions is extracted from the FEM code as a
table. This format is rather cumbersome (because of the
file size) and errors within are difficult to detect. However,
by performing a discrete Fourier transform (DFT), one can
obtain a more convenient, analytical representation of the
field, in terms of a set of Fourier coefficients. The Fourier
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basis functions are solutions of Maxwell’s equations, and
can be expressed either in cartesian coordinates, or in cylin-
drical polar coordinates. Given the cylindrical geometry of
the system, with azimuthal symmetry �B(φ + 2π) = �B(φ),
cylindrical polar coordinates are more appropriate for our
purposes:

Bρ =
∑

m,n

amnI ′m(nkzρ) sin(mφ) sin(nkzz), (1)

Bφ =
∑

m,n

amn
m

nkzρ
Im(nkzρ) cos(mφ) sin(nkzz),

Bz =
∑

m,n

amnIm(nkzρ) sin(mφ) cos(nkzz).

The coefficients amn are obtained by performing a 2D DFT
on the values of Bρ on a cylinder of radius ρ0, whose axis is
coincident with the z axis. A given amn is simply the cor-
responding Fourier coefficient, normalised by I ′

m(nkzρ0),
where Im(r) is a modified Bessel function. Longitudinally,
the analysis is simplified if the model edges (at z = 0 and
z = 394.481mm) are far enough from the magnets that the
fringe fields vanish on both sides. As we will see, in reality,
the field does not go lower than a few gauss between two
cells. The Fourier representation is accurate only within
the cylinder: for ρ > ρ0, residual errors to the fit increase
exponentially.
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Figure 1: Radial component of the magnetic field (left) and
residual of the fit (right) on a reference cylinder within one
EMMA cell.

Fig. 1 shows the radial field component and the residual
of the fit on a reference cylinder of radius ρ0 = 15 mm in
one EMMA cell. The (relatively) large residuals at the en-
trance and exit of the cell arise from the non-zero values of
the field, which cannot be represented by the Fourier basis
functions we have used. It would be possible to extend the
basis functions to include these fields, however, with errors
of the order of few gauss, this fit is considered good enough
for our tracking studies.

Although cylindrical polar coordinates are more appro-
priate for the field description, beam dynamics studies are
more conveniently performed using cartesian coordinates.
In that case, we need to obtain a representation of the field
using basis functions in cartesian coordinates. In cartesian
coordinates, the vertical component (for example) of the
magnetic field can be written:

By =
∑

m,n

cmnei(mkxx+nkzz+ikyy). (2)

Generally, a fit to numerical field data based on Eq. (2) is
less successful than one using cylindrical polar coordinates,
Eq. (1), because the cartesian expression has an intrinsic
periodicity in the transverse variable x, which does not
properly describe the field in accelerator magnets. How-
ever, it is possible to obtain a reasonable description of the
field by converting the coefficients amn to a set cmn. A
value for kx needs to be assumed, and can be chosen to
minimise the residual in the final field description. Fig. 2
shows the residuals of the cartesian field description to the
original numerical field data; the exponential increase in
the residuals outside the reference cylinder originally used
for obtaining the fit can be seen clearly.
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Figure 2: Residuals on the median plane after cartesian
conversion over a large range in x (left), and over a region
contained within the original reference cylinder (right).

GENERATION OF A DYNAMICAL MAP

To track particles in a lattice, the equations of motion
have to be solved. Where a quadrupole can be represented
by a hard-edged model, a first order approximation is of-
ten good enough to describe particle motion through the
magnet. However, the short magnets in EMMA are dom-
inated by the fringe field, and it is possible that nonlinear
effects will be strong. A dynamical map may be obtained
in the form of a power series, truncated at some order, by
implementing an integrator for the equations of motion in
a differential algebra code: we use COSY Infinity [4]. This
requires that the magnetic field (or equivalently, the vec-
tor potential) be provided in an analytical form, for which
the Fourier representation obtained as described above is
appropriate. In principle, any integration routine may be
used; we use the symplectic integrator developed by Wu,
Forest, and Robin [5]. The phase advance per cell, dis-
persion, time of flight etc. are all easily obtained from the
map.

To sum up, from a large table of numerical field values
from OPERA, an analytical representation of the field is
found, and by integrating the equations of motion through
this field using a differential algebra code, one obtains a
dynamical map conveniently expressed as a power series.
With this dynamical map, tracking studies are easy and fast.
However the region of validity of this map has to be care-
fully considered.
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RANGE OF VALIDITY

As explained above, the magnetic field is considered
to be accurate within the reference cylinder. Where the
nominal trajectory of a particle is along the magnetic axis
of a quadrupole, it is possible to obtain an accurate field
description over (essentially) the entire physical aperture
by choosing a reference cylinder that is coaxial with the
quadrupole, and that just fits within the pole tips. However,
in EMMA, the two quadrupoles within a cell are not coax-
ial; this limits the radius of the cylinder that can be used.
Furthermore, since the nominal trajectory of a particle is
curved within a cell, it is possible that real trajectories are
not contained within the largest reference cylinder that can
be constructed through a cell. This issue can be addressed
in two ways. First, it is possible to perform the field fit on
the surface of an elliptical cylinder corresponding approxi-
matively to the vacuum chamber. Dragt and Mitchell have
described an appropriate set of basis functions [6]; how-
ever, we have not yet implemented the required functions
in COSY.

Figure 3: top right: Front view ((�x, �y) plane) of the cell
with large cylinders touching the poles; bottom right: same
front view with small cylinders. A larger area can be cov-
ered. Left: Top view of the cell ((�x, �z) plane) with various
trajectories and three small cylinders.

Alternatively, one can use field representations derived
from a set of reference cylinders, each with a different axis
and radius, chosen to cover effectively the entire interior of
the vacuum chamber (see fig.3). Depending on the position
of the particle at each step of integration, the most appropri-
ate cylinder is selected to determine the field. This method
is studied in Fig. 4; the trajectories of a particle simulated
either with a field derived from a 20 mm radius cylinder, or
from two 10 mm radius cylinders, differ by 1 mm.
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Figure 4: left:trajectory dependance on radius of the ref-
erence cylinder; right:variation of the 15MeV closed orbit
with the order of the truncation of the dynamical map .

Assuming an accurate magnetic field over a sufficiently
wide region, an approximation is still made when truncat-

ing the map at a particular power. For particles following
trajectories far from the reference trajectory, higher order
contributions may make a significant contribution, and it
is difficult to compute these contributions with good accu-
racy. This is a particular problem when particles cover a
wide range of energies in EMMA; however, since it is pos-
sible to identify a different closed orbit for each energy [7],
it is also possible to define an appropriate reference trajec-
tory in each case. Finally, it is necessary to perform conver-
gence tests to determine the necessary order to which the
map must be computed see fig. 4.)

SUMMARY AND NEXT STEPS

It is possible to construct a dynamical map correspond-
ing to a detailed description of a magnetic field. The dy-
namical map provides a more efficient representation of
particle behaviour in the accelerator than a numerical mag-
netic field map. In the case of EMMA, special features
of the geometry present certain challenges in applying the
general technique; however, it appears possible to address
these challenges by “patching together” field maps and dy-
namical maps covering different regions. The next step is
to determine the accuracy and reliability of the dynami-
cal map by making comparisons with numerical integration
codes, such as zgoubi [8]. The ultimate goal is to construct
a model of the accelerator based on dynamical maps cov-
ering a range of machine configurations.
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