
ACCELERATION OF SYMPLECTIC INTEGRATOR WITH GRAPHICAL
PROCESSING UNITS

J. Rowland, I. P. Martin, Diamond Light Source, UK

Abstract

The study of non-linear effects in storage rings requires
massively parallel particle tracking over a range of initial
conditions. Stream processing architectures trade cache
size for greatly increased floating point throughput in the
case of regular memory access patterns. The symplectic in-
tegrator of Tracy-II [1] has been implemented in CUDA [2]
on the nVidia stream processor and used to calculate dy-
namic apertures and frequency maps for the Diamond low-
alpha lattice. To facilitate integration with existing work-
flows the lattice description of Accelerator Toolbox [3] is
re-used. The new code is demonstrated to achieve a two or-
ders of magnitude increase in tracking speed over a single
CPU core and benchmarks of the performance and accu-
racy against other codes are presented.

INTRODUCTION

The Graphics Processing Unit (GPU) has previously
been demonstrated as a useful tool for single particle dy-
namics despite the single precision hardware [4]. The
nVidia GPU is a stream processing architecture which dif-
fers primarily from CPUs in the optimization of memory
access patterns. In short, cache space is traded for extra
floating point units and registers which enforces a regu-
lar access pattern to achieve good performance. The main
and serious disadvantage of this architecture is the lack of
double-precision floating point capability. Also the mem-
ory bandwidth while good is unable to compete with the
combined bandwidth of a cluster of processors. The most
recent generation of GPUs have a few double-precision
units for use as accumulators but the bulk of the compu-
tation must be done in single precision to fully utilize the
hardware. The GPU is also a multi-threaded architecture,
with each processor running a large number of threads sim-
ilarly to the hyper-threading of recent Intel processors. Fast
context switches between threads hide memory latency,
while the first thread is waiting for memory access to com-
plete the second thread is scheduled and can perform a cal-
culation. There should be at least as many threads as re-
quired to hide all the memory latency in the code to achieve
maximum throughput. A reasonable number of parallel
tasks is 10000 (100 processors, 100 threads per processor).
Single particle dynamics is a good fit for this architecture
as the phase space co-ordinates for each particle are held
at a fixed stride in memory and there are no complex data
structures, and parallel tracking for frequency map analy-
sis and dynamic aperture studies provides the motivation
for using a large number of particles.

While techniques such as Kahan summation or multi-

precision arithmetic would allow more accurate results this
paper takes the path of least resistance and considers what
can be achieved with a small amount of effort using the
device in the most efficient way, and whether the result is
useful as is.

SOFTWARE

nVidia provide a C++ compiler with some extra syn-
tax for the GPU. A program is compiled into two parts,
one runs on the CPU and one runs on the GPU. The out-
put is the usual binary for the system (Windows and Linux
are supported) containing both machine codes. The impor-
tant operations on the host machine are allocating buffers
on the GPU, direct memory access transfer from the CPU
to the GPU and back, and invoking calculation ’kernels’
on the GPU. This operation is similar to the parallel for
loop available in some parallel programming systems such
as OpenMP. In the case of parallel tracking the grid of
particles is distributed with one thread per particle. As
each kernel invocation must return within 5ms (the screen
also freezes when the GPU is busy) the CPU must repeat-
edly initiate a few hundred turns. Functions to run on the
GPU must be labelled with void global myname and
are called with the syntax myname(params)<<<nthreads,
nblocks>>> where nthreads is the number of threads per
processor and nblocks is the number of processors in sim-
ple usage. Inside the function the thread and block number
are available as special variables and can be used to index
into the data for that part of the calculation. The integra-
tor code is taken from the symplectic bending multipole
in Tracy-II and used for all elements (it may be more ef-
ficient to use the standard lattice data structure with more
than one pass method as there is no real penalty for taking
branches as long as all threads take the same path, but for
code brevity a single combined element is used).

The GPU has a small low-latency constant cache mem-
ory, the constant declaration causes the compiler to
target this memory. The Diamond lattice coefficients are
small enough to fit into this so memory access for the lat-
tice is essentially free and GPU main memory access is
limited to writing phase space co-ordinates once per par-
ticle per turn. Intermediate phase space co-ordinates are
stored in the large on-chip register files.

The lattice description is taken from Accelerator Tool-
box (AT) [3] and written as multipole and bending coef-
ficients to a text file. The parallel tracking program reads
this and outputs another text file containing the phase space
co-ordinates over each turn, for interactive use a Matlab ex-
tension would be more practical. It is not possible to make
the GPU tracking an AT pass method as such as the GPU

TH5PFP049 Proceedings of PAC09, Vancouver, BC, Canada

3312

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques



must track over many elements for efficiency but the AT
lattice data structure could be passed directly to the track-
ing routine through the Matlab API. For batch mode op-
eration a standard IO format such as Self-Describing Data
Sets (SDDS) [5] would be desirable.

RESULTS

The code was used to perform fast previews of the dy-
namic aperture of candidates for the Diamond low-alpha
lattice, one of which is shown below. The shape of the dy-
namic aperture and frequency map is preserved but the tune
diffusion rate is inaccurate.

The single precision performance of one mid-range GPU
with 64 stream processors is comparable to a 8 node, 64
core Intel Xeon cluster. No extra effort has been made
to optimize the CPU software by using vectorized instruc-
tions. These figures do not include the NAFF [6] calcula-
tion time which is not a limiting factor. The purchase cost
of the cluster is approximately 100 times that of the GPU,
in addition to higher power consumption and administra-
tive costs.

Table 1: Timing Results

Machine Particles Turns Time (s) Cost

9600GT 4096 2048 80 1
64 x L5430 4096 2048 80 100

0.15 0.2 0.25 0.3
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

 

 

−10

−9

−8

−7

−6

−5

−4

−3

−2

Figure 1: Frequency Map (CPU).

CONCLUSIONS

Comparing Fig. 1 with Fig. 2 and Fig. 3 with Fig. 4 it
is clear that the dynamic range of the tune diffusion is lim-
ited in single precision mode but the bounds of the aperture
and the shape of the map are preserved. Having access to
a fast interactive tool to explore the shape if not the details
of frequency maps and dynamic apertures should be useful
for design studies even as a quick check before starting a
large job on a cluster. It also opens up the possibility of

0.15 0.2 0.25 0.3
0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

 

 

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Figure 2: Frequency Map (GPU).

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 

 

−10

−9

−8

−7

−6

−5

−4

−3

−2

Figure 3: Dynamic Aperture (CPU).

global optimization of nonlinear features such as the dy-
namic aperture or resonance driving terms where the in-
creased number of function evaluations may allow a rapid
convergence to a reasonable point before continuing with
a higher precision routine. The unfamiliar programming
model, single precision arithmetic and general immaturity
of the platform preclude any serious investment in convert-
ing existing software to make use of the GPU. The diffi-
culty is similar to programming parallel message-passing
algorithms before MPI. Special-purpose accelerators have

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 

 

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

Figure 4: Dynamic Aperture (GPU).

Proceedings of PAC09, Vancouver, BC, Canada TH5PFP049

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques 3313



regularly failed to keep up with the CPU due to economies
of scale and engineering resources in the PC industry, how-
ever the programmable GPU has the benefit of being almost
as common as the CPU, and with the increasing number of
processor cores in CPUs the distinction may blur. A hybrid
programming model addressing tightly coupled multi-core
processors and message passing in the cluster will be the
norm.

The authors have not considered other GPU program-
ming libraries such as ATI’s CTM or the cross platform
OpenCL which is likely to replace both vendor specific
APIs this year. Equally the cell broadband engine offers
high performance but the benefit of the GPU is that it is a
standard low-cost component in desktop computers.

Considering the extremely low cost of the GPU and the
good match for single particle dynamics it may be worth
reconsidering multi or mixed precision schemes. The lim-
ited implementation of C++ features in CUDA may not
support an efficient implementation of operator overload-
ing with expression templates but the combined element
integrator code is small enough that replacing arithmetic
operators with multi-precision arithmetic macros is not a
limiting factor. However this is likely to incur at least a
10 times overhead [7] negating some of the performance
gains of using the GPU.

REFERENCES

[1] J. Bengtsson, “TRACY-2 User’s Manual”, SLS Internal Doc-
ument, February 1997

[2] NVIDIA, “NVIDIA CUDA Programming Guide 1.1.pdf”

[3] A. Terebilo, “ACCELERATOR MODELING WITH MAT-
LAB ACCELERATOR TOOLBOX”, PAC 2001

[4] M. D. Salt, R. B. Appleby, D. S. Bailey, “Beam Dynamics
Using Graphical Processing Units”, EPAC 2008

[5] M. Borland, L. Emery, “The Self-Describing Data Sets File
Protocol and Program Toolkit”, ICALEPCS 1995

[6] J. Laskar et al., Physica D, 56, 253, (1992).

[7] T. Fukushima, “Reduction of Round-off Error in Symplec-
tic Integrators”, The Astronomical Journal, 121:1768-1775,
2001 March

TH5PFP049 Proceedings of PAC09, Vancouver, BC, Canada

3314

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques


