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Abstract

A tree-code approach for the computation of space
charge effects between N mutually interacting bodies is
presented in the context of electron beam dynamics in high
brilliance photo-injectors. Computational effort in simula-
tions of such “dense” systems is usually dominated by eval-
uation of self-interaction effects. The method described
here is based on a hierarchy of cubic cells incorporating
a fraction of the total charge, which can be made to mu-
tually interact by first computing fields from a distant cell
at another cell center of mass by means of a multipole ap-
proximation of some type followed by a local expansion
to actual positions of macroparticles therein. It has been
shown such an approach to reduce the complexity of the
problem to O (N).

INTRODUCTION

High brilliance, coherent X-ray sources require the gen-
eration of high current/low emittance electron beams. Nu-
merical codes devoted to the simulation of such “dense”
systems must account for beam self-interaction. A variety
of methods have been devised to solve this problem. In this
contribution a tree-code[1] algorithm is discussed. These
methods are based on sorting of macroparticles in a hyerar-
chical tree of cubic cells, whose charge multipole moments
are precomputed and stored. At any other particle’s posi-
tion, the field from the charges of a given cell are evalu-
ated by a suitable multipole expansion[2] if the particle is
well separated from the cell; otherwise the fields from the
cell’s children are summed, in an iterative branching pro-
cess bound to cease when all the cells host at most one par-
ticle. It has been shown that the number of interactions per
particle inherent to such an approach is O (log N), so that
the overall complexity is O (N log N). Insofar, these meth-
ods have been used to atomic physics, electromagnetics[3]
fluid [4] and stellar([5, 6] dynamics and extended to three
dimensions[7]. In this contribution a cartesian formulation
of the type described in ref. [6] has been implemented
in the context of simulation code TREDI[8], a 3D Monte-
Carlo devoted to simulation of non axi-symmetric beam dy-
namics in RF photo-injectors featuring a covariant smooth-
ing technique to suppress numerical artifacts in electro-
magnetic self-fields[9].

APPROXIMATION OF VELOCITY
(COULOMB) FIELDS

The electrostatic potential of a N -body discrete charge
distribution generated at all charge positions r i by the other
N − 1 particles writes

Φ (ri) =
∑

j �=i

qjG (ri − rj) (1)

where qi is the charge of ith particle and

G (ri − rj) =
1

‖ri − rj‖ (2)

The value of Green function (2) for a generic argument ξ
can be Taylor expanded around a given position Δ is the

G (ξ) ≈
p∑

k=0

1
k!

(ξ − Δ)(k) �∇(k)G (Δ) (3)

up to a given truncation order p. The notation follows War-
ren and Salmon [4] by using a shorthand in which x (n) in-
dicates the n-fold outer product of the vector x by itself (in
d dimension, a dn-component symmetric tensor) and the
symbol � the (tensor) inner product. For example, assum-
ing that in (2) particle ”i” belongs to cell A and particle “j”
to cell B (see fig. 1 for details), G (ξ) (with ξ = ri − rj)
can be expanded around cell separation Δ = rA − rB (rA

and rB are the weighted mean positions of charges con-
tained in cells A and B, respectively). In general, for any

ξ = x − y with x ∈ A, y ∈ B one can further expand
(ξ − Δ)(k) in x around rA and in y around rB:

(ξ − Δ)(k) = [(x − rA) + (rB − y)](k)

=
p∑

m=0

(
k

m

)
(x − rA)(m) � (rB − y)(k−m)

(4)

for any p ≥ k. Substituting back in (3) and re-ordering
sums yields:

G (ξ) ≈
p∑

k=0

1
k!

p∑

m=0

(
k

m

)
(x − rA)(m)

� (rB − y)(k−m) � ∇(k)G (Δ)

=
p∑

m=0

(x− rA)(m)

m!
� Γ(m)

B (y,Δ)

(5)
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Figure 1: A tree hierarchy of cubic cells.

where

Γm
B (y,Δ) =

p−m∑

n=0

(y − rB)(n)

n!
� ∇(n+m)G (Δ)

(6)
Putting (5) in (1) yields the final expression for the potential
at a generic position x in cell A ( e.g. x = r i) from charges
in cell B:

ΦBA (x) ≈
p∑

m=0

1
m!

(x − rA)(m) � C
(m)
B (rA − rB) (7)

with

C
(m)
B (Δ)=QB ·

p−m∑

n=0

(−1)n

n!
∇(n+m)G (Δ) � Q

(n)
B (8)

where

Q
(n)
B =

1
QB

∑

j∈B

qj (rj − rB)(n) (9)

is the (normalized) nth-order charge multipole moment and
QB the total charge in cell B. Since is clear that

C
(m+1)
B (Δ) = ∇C

(m)
B (Δ)

it follows that the C’s can be Taylor expanded as follows

C
(m)
B (Δ + ε) =

p−m∑

n=0

1
n!

ε(n) � C
(m+n)
B (Δ)

Electric field is

EBA (x) ≈ −
p∑

m=0

1
m!

(x − rA)(m) � C
(m+1)
B (rA − rB)

(10)
In particular

EBA (rA) = −C
(1)
B (rA − rB) (11)

For a newtonian (G = r−1) potential the explicit form for
the first few coefficients C is

C(0)
B = QB

[
D(0) +

1
2
D(1)Q

(2)
B,mm

+
1
2
D(2)Δm · Q(2)

B,mn ·Δn + . . .

]

C(1)

B,i = QB

[(
D(1) +

1
2
D(2)Q

(2)
B,mm+

+
1
2
D(3)Δm · Q(2)

B,mn ·Δn + . . .

)
Δi+

+D2Q
(2)
B,im · Δm + . . .

]

C
(2)
B,ij = QB [(D(1)δij + D(2)ΔiΔj + . . .)]

C
(3)
B,ijk = QB [D(2) (δijΔk + δjkΔi + δkiΔj)

+D(2)ΔiΔjΔk + . . .]
(12)

where

D(n) = (−1)n (2n − 1)!!
Δ2n+1

(13)

In the first term of C (1)
B is easily recognizable the monopole

approximation EB ≈ QBD(1)Δ = −QB

Δ
Δ3

. Simula-

tion of space charge effects in accelerators require also
magnetic self-interactions to be accounted for. A typical
assumption[10] is that a reference frame exists where the
beam is at rest and particles interact only through elec-
trostatic forces, determined by means of a Poisson solver.
Splitting of the beam in several “slices” mitigates the ef-
fect of energy spread[11]. In the approach described in
Ref. [9] smoothing of self-fields is based on the long es-
tablished trick of giving macroparticles a finite size, yet in
a covariant fashion that avoids the need of boosting dynam-
ical variables and fields forth and back from the laboratory
to the beam frame. Regularization is achieved by scaling
the interaction in terms of an effective charge q eff of the
source macroparticle (a Lorentz scalar). Electric and mag-
netic fields are derived consistently with Lienard-Wiechert
formula[12], at the price of a lengthy calculation of re-
tarded times for each of the particles involved in the simu-
lation. In most cases, however, a “static”, faster approxima-
tion based on a simplified, “instantaneous” formulation of
the smoothing procedure is almost indistinguishable from
the more rigorous treatment. In this case the magnetic field
from a macroparticle at a given point is related to the elec-
tric field at the same position as follows[13]

B = β × E (14)

and is usable also in a tree-code for the magnetic part of the
field from a cell.
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Table 1: Photo injector parameters.
Peak accelerating field 120 MV/m
Frequency 2.856 GHz
Launch Phase (peak current) 32°
Charge 1.1 nC
Laser spot radius (homogeneous) 1.13 mm
Laser pulse length (flat-top) 11.65 ps
Solenoid peak field 2.73 kG

Table 2: CPU time performance (ncpu = 4).
Npart CPU (sec) Wall clock (sec) Efficiency (%)
1 · 105 7.537 · 103 1989 94.7
2 · 105 1.508 · 104 3822 98.6
4 · 105 3.021 · 104 7703 98.0
8 · 105 6.081 · 104 15501 98.1

PARALLEL IMPLEMENTATION

Parallelism in TREDI is achieved by assigning only a frac-
tion of the “source” particles (the ensemble of charges re-
sponsible of self-fields effects) to a given computing node,
while sharing a full copy of the “target” beam (an ensemble
of positions that source particles act upon) among all the
concurrent processes. This approach exhibits a number of
advantages: a dramatic reduction of memory requirements
(especially in “retarded” mode); ease of load balancing
among processors; confinement of blocking data synchro-
nization to a single reduction point at the end of each time
step. Conceptual separation into a “target” and a “source”
beam facilitates also evaluation of space charge at the ver-
texes of a regular mesh (2D, 3D, cartesian, cylindrical etc.)
represented as a “fake” beam experiencing fields that can
be extrapolated at the actual position of real charges.
Although a parallel evaluation of cell-cell interactions is
possible, its effective implementation is a non-trivial task,
for it is not simple to balance the load among the computing
nodes and/or reduce the communication, an issue arising in
both shared and distributed memory architectures, at least
if one wants to adhere - for sake of simplicity - to a common
paradigm to make the algorithm usable on platforms rang-
ing from desktops to large scale facilities. Load balancing,
in particular, suffers from the hierarchical structure of the
tree, that hinders a homogeneous sharing of the workload
among processors at topmost (i.e. closer to the root), more
CPU effective, branching levels. The exploited solution is
to share source (i.e. “cells”) particles among processors,
while assigning only a fraction of “target” positions to a
given computing node. A drawback of such a method is to
make awkward the treatment of the problem in “retarded”
mode. A more satisfactory treatment is likely to require a
mixed approach, at the price of more frequent communica-
tion among processors, sub-optimal work balancing and a
substantial programming effort.
Table 1 shows the parameters used for a simulation of

the Sparc layout[14] (a S-Band, photo-injector[15] + a fo-

cusing solenoid + a drift), aimed at reproducing the well
known emittance double minimum located at the end of
the drift[16]. The results of the simulations (obtained with
many codes) are available in literature and shall not repro-
duced here. It is more interesting the CPU performance,
shown in table 2 for N = 1, 2, 4, 8 · 105 particles, which
exhibits an almost perfect linearity with N which can be
explained considering that simulation is dominated by the
extrapolation of self-fields to the positions of macroparti-
cles and integration of trajectories (two processes that scale
as O (N)). This explains also the higher efficiency for large
values of N , for much of time is expended by computed
nodes on completely decoupled tasks that not require any
data synchronization.
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