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Abstract

During an operating period in which a sextupole un-
knowingly connected with the wrong polarity resulted in
reduced beam lifetime, a list of machine physics experi-
ments and simulations were developed to identify possi-
ble gradient errors of one or more sextupole magnets. We
tried tune dependence on orbit, response matrix measure-
ments at different momenta, sector-wise chromaticity mea-
surements, empirical search with sextupole harmonics, and
guidance from tracking simulations. The practicality of
each will be discussed.

INTRODUCTION

The lifetime of the stored beam at the Advanced Pho-
ton Source was reduced suddenly by ∼25% after a shut-
down (Jan 2007). After checking the more obvious causes,
such as reviewing work done during various shutdowns,
checking vacuum apertures using beam bumps, measur-
ing impedances, checking lattice symmetry by correcting
optics, and visually checking recently-modified sextupole
poles, we concluded that the reduction in beam lifetime
(and momentum aperture) was due to some unknown lat-
tice nonlinearity, say, a bad sextupole magnet coil. We
developed and evaluated several beam-based methods that
can be applied to such problems in the future, either at APS
or elsewhere. (The final determination occured in Feb 2008
when we found that sextupole power supply S27B:S3 was
connected backwards at the power supply in Jan 2007; this
was ironically discovered by looking inside a power supply
cabinet, rather than through our methods.)

We will describe each measurement and comment on its
utility. In general, the measurements reflect the reversed-
polarity sextupole S27B:S3, and hindsight analysis will be
applied. The methods described below are generally avail-
able at other light sources. We are aware of the more so-
phisticated work in [1, 2] on Hamiltonian-term analysis
from beam position monitor (BPM) histories. This requires
a large set of turn-by-turn BPMs around the ring and the
ability to extract higher-order tune amplitudes from the his-
tories, which is generally unavailable at older light sources.

SECTOR CHROMATICITY CHANGE

The chromaticity change (Δξx,Δξy) due to malfunction-
ing of one sextupole can be calculated. Given a chromatic-
ity measurement accuracy of about 0.25 unit. The list of
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individual sextupole contributions in Table 1 indicates we
may only be able to detect ∼ 50% relative error (depending
on the sextupole). A sextupole of family S3 was actually
reversed, so we would have seen a change of -0.3 in x and
-1.8 in y. Since the sextupole connection error was done in
a shutdown, the net change of chromaticity was not noticed
during the start-up week as the sextupole families may have
been empirically adjusted without further thought.

Table 1: Chromaticity Contributed by Individual Sex-
tupoles

Sextupole Δξx Δξy

S1A:S1 0.5 -0.49
S1A:S2 -0.13 0.72
S1A:S3 -0.15 0.9
S1A:S4 1.7 -1

We developed a method that locates the sector of a pos-
sible bad sextupole by directly measuring the chromaticity
contribution of each sector’s sextupoles. The steps are: a)
measure chromaticity with nominal conditions (chromac-
itity is measured by fitting tune measurements of five rf
frequency settings of range ± 100 Hz), b) ramp down sex-
tupoles for one sector, c) remeasure chromaticity, d) turn
sextupoles back on with no standardization, and e) repeat
for other sectors. If the chromaticity in step c) in one sec-
tor differs from that of other sectors then we might have a
bad sextupole there. A few hours per week were dedicated
for this slow measurement. We stopped at sector 24 (out of
40) when the bad sextupole was discovered by other means.
The method is slow and moderately accurate, depending on
the sextupole location.

BEAM BUMP THROUGH SEXTUPOLE

This method uses tune measurements to determine
whether a horizontal steering through a selected sextupole
results in a predicted tune shift. Tune measurements (using
one measurement plane, say x) are made under four condi-
tions: a) nominal steering with nominal sextupole strength,
giving ν1; b) horizontal bump with nominal sextupoles,
giving ν2; c) nominal steering with sextupole ramped down
to zero, giving ν3; and d) same bump with sextupole
ramped downm, giving ν4. The bump may contain more
than one sextupole, but only one is varied, so that the effect
of the additional sextupoles is removed by subtracting the
tunes. Also, we need to ensure that the beam energy is not
changed by the bump. The bump is created by global or-
bit control tools and must be customized for each sextupole
under test. The effect of the sextupole normalized gradient
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error ΔK2 is

(ν2 − ν1) − (ν4 − ν3) =
βx

4π
ΔxΔK2L, (1)

where βx is the horizontal beta function at the sextupole
(determined with 1%-2% accuracy); Δx is the imposed
horizontal bump at the sextupole under test, known to about
the same relative accuracy; and L is the sextupole effective
length.

In a variant of this method the bump can be replaced with
global orbit without additional processing because the or-
bits through other sextupoles are taken into account with
the tune substraction. The advantage is that bump config-
urations don’t have to be customized for each sextupole.
The processing can also include opposite-bump data for in-
creased accuracy. The method is slow in general, but poten-
tially accurate. However, the remnant field of the sextupole
under test is not taken into account and is unknown in gen-
eral. We only measured a handful of sextupoles with this
method, as we couldn’t understand the discrepancies with
prediction of the first sextupoles tested that were known to
be good. Table 2 show the results for six sextupoles in the
bump method.

Table 2: Measurement of sextupole gradient with beam
bump method using x and y tune changes. The units of
K2 are 1/m2. The last column is the model value.

Sextupole νx νy Model
+1 mm / -1 mm +1 mm / -1 mm

S1A:S1 6.9 / 6.7 7.0 / 6.9 10.1
S1A:S2 -12.4 / -14.4 -15.0 / -15.5 -22.1
S1B:S2 -20.2 / -21.8 -18.8 / -18.9 -22.1
S1B:S1 9.0 / 9.2 8.5 / 8.7 10.1
S40B:S2 18.5 / -17.7 -18.5 / -18.0 -22.1
S40B:S1 8.3 / 8.1 8.1 / 8.5 10.1

LOCAL CHROMATICITY BY RESPONSE
MATRIX FITTING

The local chromaticity is a series of positive and neg-
ative pulse-like functions along the circumference, i.e.,
(β/4π)(K1−K2η), where β is the betatron function of the
plane of interest, K1 is the normalized quadrupole strength,
K2 is the normalized sextupole strength, and η is the hori-
zontal dispersion. The net chromaticity over a segment of
the lattice can be determined through the phase advance
difference between points in the lattice. For sextupole
problems, we look for variations in the K2η term from sec-
tor to sector. This method [3] is inspired from LEP mea-
surements of BPM phases [4]: a) for several rf frequencies
(say, three), measure the BPM-corrector response matrix,
b) obtain from three optics models the phase advance along
circumference, c) fit φx,y(s) vs δ(= Δp/p), whose slope
dφx,y(s)/ds gives the chromatic phase advance. Option-
ally, step d), the perturbation in local chromaticity is de-
tected by plotting dφx,y(s)/dδ − dφx,y(s − L)/dδ, where
L is the optics period length, or some other short distance.

Figure 1: Chromatic phase advance.

Figure 2: Nonlinear dispersion calculation from ideal
model plus a sextupole reversed.

Figure 1 shows the quantity dφy(s)/dδ from the re-
sponse matrix data. We had taken the raw data but, un-
fortunately, not analyzed it until after the problem was re-
solved. The spike in the data shows the location of the bad
sextupole. The method would have detected 25% of the
sextupole setting.

This method is fast and accurate though it requires much
postprocessing. Though the method can’t take credit for
detecting our problem this time, it can be used in the future.

SECOND-ORDER DISPERSION

Reference [5], p. 106, gives a differential equation for
the nonlinear dispersion:

η′′
1 + K1η1 = −h +

1
2
K2η

2
0 + . . . , (2)

where we define η(s) ≈ η0 + η1δ, and h is the curvature
of design orbit. The main driving term is the bending mag-
net curvature h. The next important term is due to sex-
tupoles. A measurement of the second-order dispersion in
the presence of some sextupole irregularity would reveal
some small oscillation superimposed on a periodic compo-
nent. Figure 2 shows a model η1 for a reversed sextupole.
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Figure 3: Tune diagram showing tune footprint for ±2%
momentum range.

This method would be very fast to use. In practice, it
would be difficult to identify a single sextupole error since
a moderate linear optics error easily masks the sextupole
error signal. Thus this method is useful only if we had cor-
rected the first-order dispersion before the sextupole error
occured and had BPM gains properly calibrated.

SEXTUPOLE HARMONIC KNOBS

The tune diagram in Figure 3 shows a crossing of the
νx + 2νy = 75 line, which is driven by normal sextupoles.
Possibly the lack of symmetry enhances the particle loss at
that line. In this example, the nominal tunes are νx = 36.21,
νy = 19.27, and the chromaticities are +4.0 and +6.5, in x
and y planes, respectively.

We applied a sextupole harmonic knob to the problem
lattice for correcting that particular sextupole resonance.
At some amplitude and phase adjustment the lifetime for
our standard fill pattern increased from 250 to 340 minutes.
We found that the momentum aperture was not increased,
however, which was puzzling.

We could not reproduce the above improvement in sim-
ulations of a lattice with symmetry broken by a turned-off
sextupole picked at random. Simulation studies [6] with
lattice models showed that a sextupole harmonic knob had
much less effect on a symmetric lattice with one bad sex-
tupole than on an ideal lattice with general errors added.

In hindsight, we know that the lattice suffered from a
single sextupole. Simulation says that we shouldn’t have
been able to improve momentum aperture anyway, which
was consistent with our measurement.

Though this fast method doesn’t identify bad sextupoles,
it has potential in recovering lifetime loss in general.

SEXTUPOLE FAMILY OPTIMIZATIONS

The APS ring has four sextupole families. Thus for a
given chromaticity there are two free parameters for opti-
mizing the dynamic aperture (DA), the momentum aper-
ture (MA), or a mixture of both. Performing an empiri-
cal, constrained, four-dimensional search on the actual ring
is difficult because chromaticity, x-y coupling, and tunes
would have to be corrected with some effort for each iter-
ation step. Thus optimal solutions would have to be found

Figure 4: Survival intensity plot.

in simulation instead, and installed in the working lattice.
We optimized DA and MA by calculating the transmission
of a group of particles with large 6D phase space [7]: ± 10
mm in x, ± 2 mm in y, ± 2.5% in δ. Figure 4 shows the
survival intensity plots where families S1 and S2 are taken
as independent variables and S3 and S4 are adjusted for the
chromaticities.

The optimization was done with lattices with large and
small optical errors. Solutions with large errors have high
S1 values (∼14) while solutions with small errors (Figure
4) have lower S1 values (∼11). Thus the optimum sex-
tupole settings depend on the magnitude of errors. We
tested both solutions in machine studies. The solution for
large errors improved the beam lifetime, while the solution
for small errors decreased the injection efficiency and the
lifetime. We concluded that there is a strong error in the
ring. At this point we finally checked the polarities of the
sextupoles, and found the sextupole with reversed polarity.

CONCLUSION

Much work was done to identify a bad sextupole using
various beam-based methods. Also much work was done
during this one-year period in maximizing lifetime (and
DA) with sextupole optimization, and injection trajectory
optimization. The response matrix method for finding a
bad sextupole is the preferred one.
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