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Abstract 
In this paper, we discuss an algorithm for constructing a 

numerical linear optics model for dipole magnets from a 
3D field map. The difference between the numerical 
model and K. Brown’s analytic approach is investigated 
and clarified. It was found that the optics distortion due to 
the dipoles’ fringe focusing must be properly taken into 
account to accurately determine the chromaticities. In 
NSLS-II, there are normal dipoles with 35-mm gap and 
dipoles for infrared sources with 90-mm gap. This linear 
model of the dipole magnets is applied to the NSLS-II 
lattice design to match optics parameters between the 
DBA cells having dipoles with different gaps. 

INTRODUCTION 
In modern ring-based light sources, accurate optics 

calculation and control are key factors in achieving and 
improving machine performance. The accuracy of the ring 
lattice model depends on how well the focusing properties 
of individual components are modeled. Due to its 
complexity, dipole magnets’ fringe field has been widely 
studied and investigated. There are several models used in 
optics design and nonlinear tracking study [1, 2, 3], 
among them K. Brown’s model [1] has been widely 
adopted by accelerator design codes, like MAD [7], 
Elegant, etc. But for most existing machines, the 
measured optics and chromaticity are quite different from 
the theory calculation results based on K. Brown’s model. 
This suggests that this model may not be accurate enough 
to describe the real dipole field. This work attempts to 
construct a dipole model directly based on its numerical 
field map for use in ring lattice design study. 

Another motivation of this study is to control the optics 
mismatch of Double Bend Achromat (DBA) cells 
composed of different types of dipoles. A new light 
source, NSLS-II [4], is under construction at Brookhaven 
National Laboratory. The NSLS-II storage ring is 
composed 30 DBA cells. Among them, 27 cells will 
contain pairs of dipoles with 35mm gap while 3 cells will 
contain pairs of dipoles with 90mm gap for use as far IR 
sources. These two types of dipoles with different fringe 
field roll-off in their fringe region will lead to different 
lattice perturbations, such as beta-beat and tune-shift. 
Characterizing these two types of DBA cells and 
controlling their optics mismatch are important for NSLS-
II lattice design. 

CONSTRUCTION OF NUMERICAL 
LINEAR OPTICS MODEL 

Our numerical dipole model is directly based on 3D 
magnetic field map calculated by the electromagnetic 
solver, Opera-3d [5]. The basic algorithm of constructing 

the numerical model can be described as: 
• Obtain the dipole’s 3D magnetic vector field from 

calculation. The 3D field map extends far enough in 
longitudinal direction to include its fringe field; 

• Determine the reference orbit by tracking a nominal 
particle starting from the ideal orbit by integrating the 
differential equations of motion driven by the Lorentz 
force; 

• Track multi-particles with different initial coordinates 
and record their coordinates at dipole entrance and 
exit; 

• Extract linear transformation matrix from tracking 
results. 

Clarification of statements above follows below: The 
“ideal orbit” is nominal particle trajectory passing through 
the ideal hard edge dipole model, namely a certain arc 
with a constant bending radius and two straight lines 
tangent to the arc. The “reference orbit” is interpreted as 
the ideal particle’s trajectory through the real dipole field. 
The reference orbit should coincide with the ideal orbit at 
both ends well outside the fringe field region. The 
algorithm of tracking particles through the 3D field map is 
a 4th Runge-Kutta integration. There are several methods 
available to extract linear transformation matrices from 
tracking results. The easiest one is calculating its Jacobian 
matrix directly, but the transformation matrix obtained in 
this way is not strictly symplectic. In order to avoid this 
difficulty, multi-particle trajectories were fitted into a 4th 
generating function [6], and then a linear transformation 
matrix was extracted from it. Thus the non-symplectic 
integration (here Runge-Kutta integration) results will be 
symplectified automatically. 

ANALYSIS AND COMPARISON WITH K. 
BROWN’S MODEL 

Two coordinate systems are used for analysis as shown 
in Fig. 1: the 3D field maps are given in Cartesian 
coordinates (X, y, Z), so particle tracking is also 
implemented in this coordinate system. In order to extract 
a linear transformation matrix from tracking data, the 
particle’s coordinates are transformed into the local 
coordinates (x, y, s) relative to the reference orbit at both 
entrance and exit points.  

Considering linear terms only and using the symmetry 
with respect to the median plane, the relation between the 
two different coordinate systems can be written as: 
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Particles linear dynamics can be described by Hill’s 
equation 
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u  denotes here x or y , k is the normalized focusing 
strength. Concentrating only on the vertical plane, the 
normalized focusing strength can be deduced as 
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Figure 1: Two coordinates systems for dipole study. 

 
Using the NSLS-II 35mm-gap dipole as an example, 

two terms in Eq. (1) were calculated and shown in Fig. 2. 
The first term is the projection of the bending field 
variation along the “longitudinal” direction (red line); the 
second is the projection of the bending field variation in 
the “transverse” plane (blue line). Here “longitudinal” and 
“transverse” refer to Cartesian coordinate system (X, y, 
and Z). 
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Figure 2 (Color): Linear focusing terms along logitudinal 
direction from Eq. (1). 

In Fig. 2, the fringe field focusing range is quite narrow, 
its effective length can be estimated as 
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So its focal length can be obtained by integrating the 
normalized focus strength along the longitudinal 
direction,  
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The numerical 44×  horizontal-vertical transformation 
matrix obtained by using the algorithm described in the 
previous section is: 
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It can be seen that the vertical focusing term 43M  in Eq. 
(3) is in excellent agreement with Eq. (2). 

K. Brown’s model uses a thin lens to describe the fringe 
field, and introduces a modification factor when the soft-
edge effect has been taken into account [1]. A 44×  
horizontal-vertical transformation matrix obtained by 
using his formulae [1] is: 
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Comparison with Eq. (3) shows the vertical focusing 
terms 43M  differ significantly. This is because the 
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term in Eq. (1) must be included. 

One cell of the NSLS-II DBA lattice is used to compare 
the optics difference by using these two models. We use 
lattice design code MAD [7] to calculate Twiss 
parameters. The calculated Twiss parameters are shown in 
Fig. 3. Obvious differences (~10%) can be observed in the 
vertical plane. The difference of chromaticities calculation 
will be investigated in the next section. 
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Figure 3 (Color): One cell optics parameters of NSLS-II 
by using different dipole models. 

 
In fact, it can be proven (not shown here) that the 
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shows it is the first order term in K. Brown’s model. The 
second defocusing term in Eq. (1), which comes from the 
fringe field “transverse” gradient, isn’t negligible here. 
We need to include it into our linear optics design 
consideration in order to get correct optics parameters. 

The analysis for the horizontal plane can be 
implemented in the same way; however the bend focusing 
needs to be included inside the dipole body, which can’t 
be treated as a thin lens any longer. The matrix in Eq. (3) 
can be expanded into a 66×  matrix by tracking particles 
with different energy deviations. 

From Eq. (1), we see that the fringe field effect can be 
derived from the vertical component on the median plane 
in Cartesian coordinates. It is a consequence of Maxwell’s 
equations, and suggests an easy way to determine the 
dipole fringe focusing effects by using Hall probe 
technique to measure only the dominant field component.  

CHROMATICITIY CALCULATION 
The dipole fringe field contribution to chromaticity can 

be found in refs. [8, 9, 10]. 

( )[ ]{ }

[ ]{ }dshhhkk

dshhhkhk

L

xxyxxxxyyy
y

L

xxxxxxxxxxxx
x

∫

∫

+′′++−=
∂
∂

+′−+−−=
∂
∂

0

0

'2

4
1

22
4
1

ηγηηβ
πδ

ν

ηγηαηβ
πδ

ν

Here, 
ρ
1=xh , 

s∂
∂=' , γβα ,,  are Twiss parameters and xη  

is the horizontal dispersion. After inserting the numerical 
matrices into MAD code, the optics parameters on both 
ends of magnet are obtained. Using the known values for 

)(, sk yx  and the expressions of the derivatives of the Twiss 
parameters [11], 

,2' and   ,-'   ,-2' αγγβααβ kk ===  
Twiss parameters inside dipole along the longitudinal 
direction can be determined. Thus the integrations along 
the reference orbit can be calculated as 012.0/ =∂∂ δν x  , 

0012.0/ −=∂∂ δν y
 for one dipole, the total contribution 

from all 60 dipoles is 0.72 and -0.07, respectively. 
Although the direct contributions from the dipoles are 
quite small, obvious difference appear by comparing the 
chromaticities calculation results by using these two 
dipole models, especially in the vertical plane. The reason 
is that the dipole fringe field’s focus strength is 
overestimated in K. Brown’s model (see Eq. (3) and (4)), 
yielding results smaller than actual values, and at the 
same time, the chromaticity is proportional to the beta 
function at quadrupoles locations. This eventually causes 
the actual vertical chromaticity to be larger than the 
calculation results of K. Brown’s model. For example, 
NSLS-II lattice using K Brown’s dipole model 
gives 5.40/2.101/ −−=yxξ , while using the numerical 
model gives 6.43/0.100/ −−=yxξ . For small rings with 

large dipole fringe angle and wide fringe field region, this 
difference could become even more dramatic. 

APPLICATION 
This numerical dipole model is used in NSLS-II lattice 

design to match the DBA cells with different types of 
dipoles (with a gap of 35mm and 90mm). The quadrupole 
triplets in the long and short straight sections are chosen 
to match the optics to desired boundary values at the 
centre of two straight sections. Fig. 4 shows the optics 
parameters after the quadrupole K-values have been re-
adjusted. In this way, the optics difference between 
different DBA cells can be controlled better than 1%. 
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Figure 4 (Color): One cell optics parameters of NSLS-II 
after using quadrupoles triplets to re-match optics. 

SUMMARY 
An algorithm for constructing a numerical linear model 

for a dipole magnet is developed. This numerical model 
can bridge between the physics model and the magnet’s 
design and measurement. It also provides a guide to 
dipole design at its inception. Inclusion of nonlinear terms 
from dipole fringe field is under study. 
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