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Abstract

The GSI heavy ion synchrotron SIS18 will be used as a
booster for the SIS100 synchrotron of the new FAIR facil-
ity. The linear corrections and measurements are a neces-
sary step before the nonlinear field errors can be applied. A
tune response to a change in a sextupole magnet strength
for a certain Closed Orbit (CO) deformation is used to
verify beta-functions of the SIS18 model at the location
of the ring’s sextupoles for chromaticity correction. The
progress in development of Nonlinear Tune Response Ma-
trix (NTRM) technique [1, 2] to diagnose nonlinear field
components is presented.

INTRODUCTION

In the Orbit Response Matrix (ORM) method the CO re-
sponse to the steering angle change provides information
on the linear field errors. The NTRM technique extends
the ORM method with the difference that the tune response
to the steering angle change is measured. At the moment
in the SIS18 the tune can be measured with much higher
precision than the CO. We are taking an advantage of mea-
suring the tune instead of the CO to retrieve experimentally
β-functions, dispersion and nonlinear field components of
the machine. A nonlinear element can be a lattice sextupole
as well as a dipole magnet nonlinear error. A sextupole pro-
duces additional focusing k̃ depending on the closed orbit
position. The CO distortion in the sextupole produces the
tune shift, which contains information on linear and non-
linear optics.

LINEAR OPTICS STUDIES

The first order contribution to the machine tunes with re-
spect to the distorted CO [3] in the presence of nonlineari-
ties is

ΔQx,y = ± 1
4π

∫ C

0

βx,y(s)k̃(s)ds , (1)

where k̃ is an extra linear focusing component of the ring’s
nonlinear elements, C is the circumference of the ring. The
tunes with respect to the CO are given by Qx = Qx0+ΔQx

and Qy = Qy0 +ΔQy. Here Qx0 and Qy0 are the tunes of
the linear lattice with the closed orbit corrected. If Nl thin
normal sextupolar elements each of integrated strength K2l

located at sl are included in the ring, then Eq. (1) becomes
a sum

ΔQx,y = ± 1
4π

Nl∑
l=1

βx,y lK2lxCOl , (2)

where the horizontal and vertical βx,y l are taken at the lo-
cation sl; xCO l is the horizontal CO at the location sl de-
formed by a setting of Nt steering angles. The value of

xCO l calculated via the ORM is

xCO l =
Nt∑
t=1

Mx
ltθxt , (3)

so that Eq. (2) reads

ΔQx,y = ± 1
4π

Nl∑
l=1

Nt∑
t=1

βx,y lK2lM
x
ltθxt . (4)

Choosing one sextupole at l = l and changing its strength
of ΔK2l, and taking one steerer t = t, then from Eq. (4)
we obtain β-function at the location sl

βx,y l = ± 4π

ΔK2l

ΔQx,y

ΔxCO l

= ± 4π

ΔK2l

x,yQ
x
t

Mx
lt

, (5)

where x,yQ
x
t = ΔQx,y/θxt. The SIS18 has 12 normal
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Figure 1: Simulation to the β-function measurement.
independently powered sextupoles, united in two groups
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for the horizontal (S#KS1C) and vertical (S#KS3C) chro-
maticity correction (here # = 1,3,5,7,9,11). Perturb-
ing each of them consecutively with a certain ΔK2l allows
to measure 12 horizontal and vertical β-functions. Coher-
ent beam oscillations were excited by a fast Q-kick of about
0.15 mrad given on 45◦ in both X- and Y- planes. The beam
particle tune was computed using the FFT of the coordi-
nates over 2048 turns with data filtering [4]. The sextupoles
were activated with their chromaticity settings: (S#KS1C)
with K2 = −0.2162 m−2 and (S#KS3C) with K2 =
0.4004 m−2. The CO was varied using the steerer #10
(S10MU1A). The coherent oscillations are measured for
each steering setting of the perturbed CO. After the sex-
tupole S11KS1C was increased by ΔK2 = 0.02 m−2 the
procedure was repeated. The simulation for the horizon-
tal and vertical tune responses is presented in Fig. 1a and
b. Subtracting two parabolas differential linear slopes are
obtained (Fig. 1c). Using Eq. (5) the βx,y 11 are found.
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Figure 2: Test of the proposed β-function measurement.

According to the simulation the accuracy of the retrieved
β-functions is better then 0.5 %. For the distorted ver-
tical/horizontal CO with a kick of 0.5-2 mrad the rela-
tive error increases to 2-10 %. A measurement for con-
ditions close to the simulations is presented in Fig. 2. The
βx 11 obtained for two different excitations of the sextupole
S11KS1C are given in Table 1, the corresponding model
values are βx 11 = 29.06 m and βy 11 = 7.43 m.

Table 1: βx 11 Retrieved from Measurement Data

ΔK2 , m−2 βx 11, m Rel. error, %
S1: 0.04 29.49 1.5
S2: 0.08 30.97 6.5

Eq. (1) allows a verification of dispersion at the location of
sextupoles sl after the β-functions are found. By altering
the mean beam momentum, the CO is changed ΔxCO l =

DlΔp/p, which inserted in Eq. (5) yields

ΔQx,y

Δp/p
= ± 1

4π
ΔK2l(Dβx,y)l , (6)

then we find the product (Dβx,y)l. To test Eq. (6) the sex-
tupole S11KS1C was varied with ΔK2 = −0.374 m−2.
The chromaticity change produced in both X- and Y- planes
was measured. Using the model values for βx 11 and βy 11

the dispersion at the location of the sextupole S11KS1Cwas
experimentally estimated, see Table 2.

Table 2: D11 Retrieved from Measurement Data

Model Exp. using βx 11 Exp. using βy 11

D11: 3.16 m (3.48 ± 0.35) m (3.54 ± 0.36) m

NONLINEAR OPTICS STUDIES

The other important application of Eq. (1) is the reconstruc-
tion of sextupolar field errors of the ring’s main dipoles.
The NTRM technique to diagnose nonlinear field compo-
nents in circular accelerators was tested in [1, 2] with two
sextupolar errors. We extend here its validation by us-
ing six probing normal sextupolar errors. The six chro-
matic sextupoles (S#KS1C) and six horizontal steerers
were chosen arbitrary in the ring (Fig.3). The measurement
conditions were adjusted close to those of the previous tests
for two sextupolar errors [1, 2]. A one turn injection was
optimized to create a ‘pencil’ like beam to exclude finite
beam size effects on the tune. The tune response with chro-
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Figure 3: SIS18 sextupolar magnets and steerers used.

matic sextupoles powered on (referred to the setting S0) is
measured. Then six sextupoles for chromatic correction get
a small extra probing strength error, and the tune response
is re-measured for the same CO deformation (setting S1),
see Fig. 4. By subtracting the two tune response curves, the
resulting differential tune response (Fig. 4c) depends solely
from the extra probing error added to the sextupoles. When
the normal probing errors are excited, only the horizontal
deformation of the CO can reveal them

xQx
t =

1
4π

Nl∑
l=1

Nt∑
t=1

βx lK2lM
x
lt , (7)
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where ΔQx =x Qx
t θxt. As the probing errors are folded

linearly into the terms xQx
t , the experimental task is to

measure the differential tune response and obtaining xQx
t .

The procedure for measuring xQx
t was repeated for the

other five horizontal steerers. Solving the linear system of
Eqs. (7) with the simulated βx l and Mx

lt the set of prob-
ing errors K2l was found. The results obtained from the
simulations and experiments are summarized in Table 3.
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Figure 4: Measured a) and calculated with MICROMAP b)
fractional part of the horizontal tune vs. horizontal steering
angle θ2 (S02MU1A). The corresponding differential tune
responses d).

Table 3: Additional Strengths Applied in the Sextupoles

Normal sextu- ΔK2 Cal. Exp. Rel. Err.,
polar error, l ×10−2, m−2 %

1 3 3.011 2.634 12.2
2 -4 -4.001 -4.440 10.0
3 1 1.000 0.773 22.7
4 -1 -1.001 -1.758 75.8
5 -2 -2.001 -1.786 10.7
6 2 2.020 1.480 26.0

Note that the six probing normal sextupolar errors are of
the order of natural errors (K2 ≈ 0.01 m−2). The accu-
racy in reconstruction of the six sextupolar field errors is
about 10-25%, except for the error l = 4. The drawback of
the performed tune measurements is that the working point

(tune value for not distorted CO marked with a red square
in Fig. 4a) was set close to the third order resonance. Al-
though a relatively large beam loss was observed, it was
possible to obtain the tune value from the measured spectra
with sufficient precision. For this reason, the reproducibil-
ity of the solution has been checked numerically for hori-
zontal tunes in the range 4.31:4.35. It is important to note
that Fig. 4c shows indirect test of sextupolar- and steerer-
magnets’ calibration.

APPLICATION AND OUTLOOK

A possible lattice model with nonlinear components is
made with one sextupolar error located in each period of
the SIS18. In this case the total change in the horizontal
tune produced by the 12 natural sextupolar errors K2λ and
12 chromatic sextupoles K2l is

4π xQx
t =

Nt∑
t=1

[
Nλ∑
λ=1

βx λK2λMx
λt +

Nl∑
l=1

βx lK2lM
x
lt] . (8)

The effect of chromatic sextupoles [the second term in
Eq. (8)] is included as the precision of the tune evaluation
is often limited by the signal decoherence. However, a tune
measurement over 2048 turns was performed without chro-
matic sextupoles, see Fig. 5. The measured tune response
is produced only by the systematic and natural errors of the
machine. The parabolic behavior can be a result of the pres-
ence of octupolar and coupled sextupolar field components
[1]. The linear contribution of the normal sextupolar field
errors xQx

2 is linear in θ (red marker in Fig. 5). Obtaining
xQx

t for the other 11 horizontal steerers will complete the
left-hand side of the linear system of Eqs. (8) for finding the
12 natural sextupolar components K2λ in the each period
of the SIS18.
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Figure 5: Measured fractional part of the horizontal tune
vs. horizontal steering angle θ2 (S02MU1A) without chro-
maticity corrected.
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