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Abstract

In order to achieve a more robust and optimal perfor-
mance, the difference between the real machine and its un-
derlying model should be understood and eliminated. Dis-
crepancies between the measured and predicted linear op-
tics suggest possible errors of the focusing magnets and di-
agnostic devices. To find and correct those errors, a widely
used method, orbit response matrix (ORM) approach is ap-
plied to the SNS storage ring, which successfully brings the
tune deviation from 3% to 0.1%, improves horizontal beta
beating from 15% to 3%, and perfectly flattens the orbit. In
this article, we discussed the progress and possible future
improvements with the SNS ring optics correction.

INTRODUCTION

The accumulator of the spallation neutron source (SNS)
is a ring of 248 meters circumference, with 44 BPMs and
52 steering correctors. Final transverse quasi-uniform dis-
tribution is achieved by injection painting, with the full in-
tensity of 1.5 × 1014 and power of 1.4 MW. The accumu-
lator is four-fold symmetric with each super-period con-
taining one FODO arc section and a doublet straight sec-
tion. There are 32 arc dipole magnets and 52 quadrupole
magnets, of which 16 located in the straight and 8 in high-
dispersion areas of the arcs. Working point of the ring is
at (6.23,6.20) but it was set empirically because the online
model’s prediction for the tune differs from the real value
by about 0.2. To enhance the machine’s reliability and ca-
pability, we need to have a better understanding to develop
a precise model. Hence, linear optics correction becomes
important and necessary, and the response matrix method
(ORM), which has been proven to be able to correct lin-
ear optics, is applied on SNS accumulator to calibrate the
machine.

Historically, the ORM approach has been used in elec-
tron rings to uncover malfunctioning BPMs, roll angles of
magnets, mis-aligned higher order multipoles and calibra-
tion of power supplies. However its application to high
intensity proton synchrotrons such as SNS accumulator is
more difficult due to the reduced orbit stability and preci-
sion of orbit measurements.

ORBIT RESPONSE MATRIX

The orbit response matrix (ORM) method is defined as
the linear orbit response function to a small change of
dipole kick angle (M in the equation below):
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where x and z are the detected horizontal and vertical
closed orbit shift at m BPMs, θx and θz are the strength
of the horizontal and vertical bumps. The off-diagonal sub-
matrices, MZX

ij and MXZ
ij are zero, if there is no coupling

between the horizontal and the vertical planes.
Theoretically, the ORM matrix is given by the Green’s

function [4]:

Mij =

√
βiβj

2 sinπν
cos(πν − |φi − φj |) (2)

where i and j represent the ith BPM and jth dipole kicker.
Therefore, the ORM matrix can be both measured easily

and calculated theoretically if the linear optics is known.
That makes it an appropriate choice to judge the agree-
ment between the model and the real machine, i.e. a merit-
function χ2(p) [5]:

χ2(p) =
∑
ij

(
Mmeas

ij − Mmodel
ij

σi

)2

=
∑

k

V 2
k (3)

where σi is the measured noise level on the ith BPM.
The minimization of χ2 is therefore equivalent to mak-

ing every Vk as small as possible. In the minimization
process, this can be achieved by varying some model pa-
rameters xn +�xn based on singular value decomposition
(SVD) algorithm, where the changes �xn suggests the er-
ror in the machine:

Vk(xn + �xn) = Vk(xn) +
∑

n

∂Vk

∂xn
�xn = 0 (4)

However, the assumption of linearity in equation 4 is
usually invalid in real cases. The dependence is normally
nonlinear. To tackle it, not only should we use specific al-
gorithm, such as Levenberg-Marquadt algorithm when the
problem is very nonlinear, but also we need to put con-
straints on those parameters. [3]

LOCO WITH CONSTRAINTS

LOCO is a powerful analytical tool to compute the orbit
response matrix and to fit it to the model. It was first written
by James Safranek to correct the optics of the NSLS X-ray
ring [1] and developed later by people at SLAC. It follows
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the similar minimization procedure as we described in the
previous section. Not only the fitting parameters such as
quadrupole strengths are included, but also the measured
ORM’s correction needs to be considered, e.g. gains and
rolls of the BPMs and the correctors, as well as the mo-
mentum deviation due to the horizontal correctors.

Since coupling between LOCO fit parameters can cause
excursions of the solution in unconstrained directions, it is
natural to put a penalty on such excursions, which brings
the χ2 to the following new format [3]:

χ2 =
∑
ij

(
Mmeas

ij − Mmodel
ij

σi

)2

+
1

σ2
�K

∑
k

w2
k�K2

k

(5)

where σ�K is an overall normalization constant and w2
k is

an individual weighting factor to constrain the correspond-
ing quadrupole. This constraint played an important role in
SNS to find out the best solution.

FITTING RESULTS

It requires two stages to fit the ORM with LOCO:
First, to find the quadrupole gradient errors, we choose

our fit parameters as 6 quadrupole power supplies, 42 BPM
gain factors and 52 corrector strengthes (24 in horizontal
and 28 in vertical). We will exclude dispersion from
the fitting target because orbit error in quadrupoles and
sextupoles leads to changes in dispersion which are not
accounted for in the model. We also fit the energy changes
at correctors with the Constant-Momentum method in
LOCO [5]:

Mmodel = (
�p

p
)fitDmeasured + MATmodel (6)

where D is the dispersion. In SNS accumulator, the hor-
izontal dispersion is designed to be 4m on arcs and zero
through the straight section, while the vertical is small
within 0.3m variance.

Second, we add the skew quadrupoles’ strengths and
coupling factors of BPMs and correctors into the set of fit
parameters and do the fitting again. This completes the first
stage to reveal quadrupole errors and BPM/corrector cali-
bration.

Then, to fit the beta and dispersion functions, we include
the measured dispersion as an additional column in the
response matrix, and choose the so-called Fixed-Path-
Length method in LOCO [5]:

Mij =

√
βiβj

2 sinπν
cos(πν − |φi − φj |) +

DiDj

αL
(7)

After two iterations, as shown in Fig 1, χ2 has been re-
duced from order of 10−1 to 10−3, with the beta change
(statistical standard deviation of βafter

βbefore
at 42 BPMs) be-

tween 8% to 11%. It is worthwhile to mention that the
orbit error in the experiment is small. Therefore, although
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Figure 1: Comparison of the fitting for different stages.

0 50 100 150 200
0

5

10

15

20

25

30

Position [meters]

H
or

iz
on

ta
l B

et
a 

F
un

ct
io

n 
[m

et
er

s]

Model Beta Function (ν
x
=6.4498)

(a) before

0 50 100 150 200
0

5

10

15

20

25

30

Position [meters]

H
or

iz
on

ta
l B

et
a 

F
un

ct
io

n 
[m

et
er

s]

Model Beta Function (ν
x
=6.2438)

(b) after

Figure 2: βx beating is reduced after corrections.

the model does not contain orbit errors, the results of the
two stages do not differ much.

The convergence of the χ2 becomes much slower af-
ter two iterations while the corresponding beta change and
gradient errors are relatively large. Since smaller gradient
changes are preferred for optics control due to the linear
field-current assumption, the present gradient corrections
were dialed into the real machine:
−2.76% for QV11a12, −2.86% for QH10a13,
−1.64% for QV01a09, −1.46% for QH02a08,
−1.91% for QV03a05a07, −2.05% for QH04a06.

Results are exciting, the discrepancy between νmodel and
νmeas was reduced from 0.2 to 0.008, and it is now much
easier to flatten the orbit. The LOCO fit also indicates that
the gradient errors are the main source for the βx distortion,
reducing the horizontal beta beating from 15% to 3% as
shown in Fig.2.

LOCO fit also predicts the calibration for the BPM and
corrector gains and coupling factors shown in Fig 3, from
which we can see the BPM coupling appears to be 6% on
average and peaks at 10% in some cases with a global pat-
tern. Since coupling due to the electronics should be ran-
domly distributed and small and the ratios of the two cou-
pling (x and y) are not -1 in most locations, we can exclude
BPM block rotation and electronics from the major con-
tribution. Such a large coupling and global pattern should

Proceedings of PAC09, Vancouver, BC, Canada TH6PFP058

Beam Dynamics and Electromagnetic Fields

D01 - Beam Optics - Lattices, Correction Schemes, Transport 3839



0 5 10 15 20 25 30 35 40 45
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
LOCO fit result : calibration for 42 ring BPMs

BPM number

ga
in

 &
 c

ou
pl

in
g

 

 

Horizontal gain Horizontal coupling Vertical gain Vertical coupling

(a) BPMs’ calibration

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Corrector

no
rm

al
iz

ed
 k

ic
k 

&
 c

ou
pl

in
g

LOCO fit result : calibration for 24 HKickers and 28 VKickers

 

 

Horizontal kick Horizontal coupling Vertical kick Vertical coupling

(b) Correctors’ calibration

Figure 3: Fitted BPM and corrector calibration factors.

be caused by the lattice coupling. Although we added the
skew quadrupoles to the fit parameters, it is apparent that
the settings of them did not kill the lattice coupling en-
tirely. That’s also a reasonable explanation for the large
regular coupling of correctors, because the geometric vari-
ation should not contribute this much.

Those gain factors in Fig.3 are not absolute values but
have an overall scaling factor between BPMs and correc-
tors, which is inevitable due to the definition of response
matrix. Absolute values cannot be obtained unless disper-
sion is large and included in the fitting parameters. Unfor-
tunately, we have large horizontal dispersion on arcs but
only small vertical dispersion. However, the relative pat-
tern of the fitted gains is reliable.

By scaling the measured betatron function to the model
value, it suggests the overall scaling factor to be 1.06.
The measured betatron function is obtained by analyzing
BPM’s responses for two kicks with the formula 8.

βi =
4sin2(πQ)

sin2� (
x2

ia

βaθ2
a

+
x2

ib

βbθ2
b

− 2xiaxibcos�√
βaβbθaθb

) (8)

where � = |φa − φb| is the phase advance between the
two correctors, and the quantities �, φa and φb should
be the corrected/fitted results. So, θ should be θ/s and
β should be β/s where s is the overall scaling factor. It
is varied to bring the ”measured” beta close to the model
value (Fig.4), and this procedure is repeated for several
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Figure 4: Red spots are the measured beta at BPMs after
applying the overall scaling factors, while Green spots are
not.

two-correctors sets to fit the factor.

CONCLUSION

Orbit response matrix analysis has been used in SNS
accumulator to find out the quadrupole gradient errors,
correct the beta function and dispersion and figure out
the calibrations of BPM and corrector. The correction of
quadrupole gradient errors has already been implemented
in the ring, which enhanced applications that were devel-
oped based on model optics, such as the tune-setting, lo-
cal bump creation, and orbit correction. In the future, it
is intended to figure out the skew quadrupole strengths to
kill the lattice coupling thoroughly, and model all magnet
rotations and translations including the dipoles and sex-
tupoles. Also, betatron function measurement needs to be
further investigated because both Model Independent Anal-
ysis (MIA) and the two-kicker response method are very
sensitive and not so reliable.
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