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Abstract

We present a newly developed method to analyze some
non-linear dynamics problems such as the Henon map us-
ing a matrix analysis method from linear algebra. Choos-
ing the Henon map as an example, we analyze the spectral
structure, the tune-amplitude dependence, the variation of
tune and amplitude during the particle motion, etc., using
the method of Jordan decomposition which is widely used
in conventional linear algebra.1

INTRODUCTION

The question of the long term behavior of charged parti-
cles in storage rings has a long history. To gain understand-
ing, one would like to analyze particle behavior under many
iterations of the one turn map. The most reliable numeri-
cal approach is the use of a tracking code with appropri-
ate local integration methods. For analysis, however, one
would like a more compact representation of the one turn
map out of which to extract relevant information. The main
representations that have been studied have been either in
terms of Lie operators[1], or power series[2]. Here, we use
a third representation, a square matrix constructed out of
the power series map. We find that using linear algebra
methods on this matrix, the relevant information can be ex-
tracted with relative ease.2 In particular, we might consider
our method as a normal form algorithm [4],[5],[6], which
provide tunes as functions of phase space. Our method is
distinguished from other normal form approaches in that a
measure of the lack of integrability may be also be calcu-
lated, thus giving an analytical approach to what has previ-
ously only been available numerically3.

We illustrate and apply these ideas using the Henon map
as an example.

REPRESENTATION OF NON-LINEAR
MAPS USING SQUARE MATRICES

The power series for the Henon map is given by

x = x0 cosμ + p0 sinμp0 + εx2
0 sin μ (1)

p = −x0 sin μ + p0 cosμ + εp2
0 cosμ

This represents a rotation in phase space by an angle μ,
followed by a single sextupole kick with strength ε. Note
that on the left, only x and p appear, whereas on the right,

1Work supported by DOE contract DE-AC02-98CH10886.
2We note that this matrix description has been mentioned in the litera-

ture,(see e.g. [3], eq. 9.36 and following) though not pursued.
3Non-integrability via tune diffusion is part of the numerical method

known as Frequency Map Analysis [8].

we have different powers. By extending the phase space
point to include higher order monomials and truncating at
a fixed order, we may construct a square matrix representa-
tion. The other elements are given by finding higher order
monomials of x and p. For example, with the Henon map,
up to 4th order, we find

x = x0 cosμ + p0 sin μ + εx2
0 sin μ

p = −x0 sin μ + p0 cosμ + εx2
0 cosμ

x2 = x2
0 cos2 μ + 2x0p0 cosμ sin μ + p2

0 sin2 μ

+εx3
0 cosμ sin μ + εx2

0p0 sin2 μ + ε2x4
0 cos2 μ

xp = −x2
0 cosμ sinμ + x0p0(cos2 μ − sin2 μ)

+εx3
0 cos(2μ) + 2εx2

0p0 + ε2x4
0 cosμ sinμ

. . .

p4 = x4
0 cos4+4x3

0p0 cos3 μ sin μ+6x2
0p

2
0 cos2 μ sin2 μ

+4x0p
3
0 cosμ sin3 μ + p4

0 cos4 μ

We may now write this in the form

X = MX0 (2)

where to 4th order, we define the 14 × 1 monomial array

X̃0 = ( x0 p0 x2
0 x0p0 p2

0 . . . p4
0 ) (3)

The tilde represents matrix transposition. We refer to X0

as an extended phase space vector. In the more general
case, M in (2) could represent a map for a full turn, part
of a turn, or simply a transformation of variables. Here
it represents a one turn map. We point out a benefit of
this formulation is that map composition reduces simply to
matrix multiplication.

By extending the phase space vector, we have linearized
the evolution equations. In the Lie Algebra formulation,
maps act on phase space functions. If we represent the co-
efficient of the polynomial functions as row vectors, (e.g.
(0 0 k 0 1) represents kx2 + p2) then a Lie map may be
represented as a square matrix acting to the left. Thus, in
this matrix picture, both the Lie map and the transfer map
may be represented by the same object.4

ANALYSIS OF SQUARE MATRIX MAP
USING LINEAR ALGEBRA

We would like to extract the spectral structure from the
matrix M . The first inclination may be to try to diago-
nalize and find the eigenvalues. It turns out, however, that

4In case one represents functions as column vectors, then the Lie map
and transfer map matrix are transposes of each other. That these objects
are transposes (or adjoints) has been pointed out by Forest [7].
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for symplectic non-linear maps M is not diagonalizable.
All square matrices may be transformed into Jordan form,
however. When transforming the non-linear map matrix,
we find that the Jordan form always has the same structure,
dependent only on the eigenvalues of the linear map. The
dependence on the specific form of the non-linearity is hid-
den in the structure of the transformation. We will actually
find it more convenient to do a Jordan decomposition on M̃
as will become clearer later. Doing so, we find

Ñ = UM̃U−1 (4)

=

⎛
⎜⎜⎜⎜⎜⎝

Ñ0

Ñ1

Ñ−1

Ñ2

Ñ−2

. . .

⎞
⎟⎟⎟⎟⎟⎠

(5)

Ñk = eikμI + τ† (6)

with k = ±1,±2, . . .. I is the identity matrix and τ † the
matrix with 1’s just above the diagonal:

τ† =

⎛
⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎞
⎟⎠ τ =

⎛
⎜⎝

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎠ (7)

We have written out τ and τ † explicitly for a 4 × 4 case.
We will use the symbols interchangably regardless of their
dimension. The different blocks will have different dimen-
sions lk dependent on the truncation order. The 0 block
N0 = I gives invariants.

RAISING THE MAP TO THE NTH POWER

In order to find the motion after n turns, we need to com-
pute Mn. We replace (2) with X = M nX0. With (4) we
find Mn = Ũ−1NnŨ . Defining Ψ0 = ŨX0, we find the
new value of the Ψ0 vector to be Ψ = N nΨ0 = en ln NΨ0.
We perform the last step in order to extract the frequency
content. Expanding the logarithm in the k th block, using
the transpose of (6) we get ln(Nk) = ikμI + e−ikμτ −
1
2 (e−ikμτ)2 + . . . This matrix is in lower triangular form,
since powers of τ just move the ones further below the di-
agonal. The series will be automatically truncated at the
order lk. Now, we find a further transformation Ṽ to bring
each of the ln Nk into Jordan form. Let Vk be the block of
V corresponding to Nk. Doing this, we find

ln(Nk) = Ṽ −1
k (ikμI + τ)Ṽk (8)

Now, if we define the vector

Φk0 = ṼkŨkX0 (9)

Where Uk is the matrix that projects X onto the Nk sub-
space. 5 Then the new vector after n turns is

Φk = en(iμ+τ)Φk0 (10)

EIGENVECTORS OF JORDAN BLOCKS,
LOWERING OPERATOR, AND

COHERENT STATES

We now focus on Φ1, the k = 1 projection of Φ, corre-
sponding to eiμ. We drop the subscript and just refer to the
initial and final vectors in the subspace as Φ0 and Φ. We
write

Φ̃0 = (φl . . . φ2 φ1 φ0 ) (11)

with l the dimension of the subspace, (determined by the
truncation order). The evolution equation (10) can be writ-
ten Φ = einμenτΦ0. We note that if Φ0 were an eigenvec-
tor of τ , then (10) would be a simple eigenvector equation.

Let | j〉 represent a vector with a one in the j th slot from
the bottom and all other elements 0. These form a basis for
the subspace. The matrices τ and τ † act on these states as
raising and lowering operators respectively:

τ | j〉 =| j − 1〉 for 0 < n ≤ l, τ | 0〉 = 0 (12)

τ† | j〉 =| j + 1〉 for 0 ≤ n < l, τ† | l〉 = 0 (13)

Now, we define

| α〉 =
l∑

j=0

αj | j〉. (14)

Consider for the moment the limit l → ∞. We then find

τ | α〉 = α | α〉. (15)

In other words, | α〉 is the eigenvector of τ with eigenvalue
α. This is the definition of a coherent state, analagous to
minimum uncertainty wave-packets in quantum mechan-
ics. For finite l, | α〉 is only an approximate eigenvector
of τ . However, the failure is at the highest power in the
coordinates, so we expect this to be a good approximation.
From now on, we neglect this distinction, treating | α〉 as
an eigenvector of τ even for finite l.

Now, suppose that:

Φ0 = φ0 | α〉 (16)

Then
Φ = en(iμ+τ)φ0 | α〉 = en(iμ+α)Φ0 (17)

So that μ + Im(α) is the frequency associated with this
block. From this, we interpret Im(α) to be the tune shift
at initial phase space position (x0, p0). If Re(α) > 0, then
the particle is unstable.

An integrable system has a well-defined tune for any ini-
tial phase space position. Thus we make an identification
between coherent states for Φ0 and integrable systems.

5We remark that U1V1 is a 35×4 matrix for 7th order truncation. The
four columns form an eigenbasis for the k = 1 subspace of M̃ . There
are lk − 1 degrees of freedom to choose this basis which can be fixed
by choosing the generalized eigenvectors to be orthogonal to the ground
state, which is defined below.

Proceedings of PAC09, Vancouver, BC, Canada TH6PFP067

Beam Dynamics and Electromagnetic Fields

D02 - Non-Linear Dynamics - Resonances, Tracking, Higher Order 3863



DEVIATION FROM COHERENCE, OR
LACK OF INTEGRABILITY

When the system is not integrable, the ratio αj ≡ φj+1
φj

varies with j.6 But away from chaotic regions, the variation
is presumably small. φ0(n) may be expanded as

φ0(n) = φ0e
(iμ+α0)n (18)

×e
1
2 (α1α0−α2

0)n2+ 1
6 (2α3

0−3α2
0α1+α0α1α2)n

3+...

When all αj are equal, it is clear that the second factor
equals one. Thus, this factor represents the deviation from
coherence or integrability. In particular, 1

2 Im(α0(α1−α0))
gives the first order variation in the tune with turn number,
or a tune diffusion.

RESULTS FOR HENON MAP

We carry out these calculations for the Henon map. We
rescale7 the coordinates such that ε = 1. We choose as an
example, μ = 2π(3 −√

5)/2. In Figure 1, we have plotted
Im(α1) and Im(α0) (lines: 7th order, dots: 8th order) along
the x0 = 0 line in phase space. We note that these begin
to differ beyond |p0| > 0.5, representing a deviation from
integrability. We see good agreement to the analytical tune
shift with amplitude formula: Δμ = −(1/16)(cot[3μ/2]+
3 cot[μ/2])(x2

0 +p2
0). In Figure 2, we show the contours of

|φ0| (calculated to 6th order) along with the tracking results
near the boundary of stability. Note that the orbit does not
fall on a single curve which is an indication of chaos in this
region. Comparison to Figure 1 shows the deviation from
coherence overlaps with this boundary.

CONCLUSIONS AND FUTURE WORK

We have found that our analysis of the non-linear map-
ping matrix for the Henon map successfully reproduces
both the correct phase space structure and tune shift with
amplitude. In addition, deviation from integrability can be
seen. We expect that maps extracted from realistic storage
ring models may also be efficiently analyzed. Extension to
higher dimension is relatively straight forward. We have
confined our analysis to a single block of the N matrix.
This is valid off resonance. Near resonance, multiple eigen-
values become close to each other and one should consider
multiple blocks to understand the dynamics. This is a topic
of on-going investigation.
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6We remark that we expect that the transformation U to Jordan form
does not represent a coordinate transformation for the non-integrable case,
whereas for the integrable case, it is a coordinate transformation.

7See [4] for more details.
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Figure 1: Im(α1) (blue), Im(α0) (red), and analytical tune
shift formula (green). vs. p0 for x0 = 0.
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Figure 2: Invariant contours from |φ0| for Henon map com-
pared to tracking results (green).
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