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Abstract _ _ _
The successful correction of non-linear resonances in

DIAMOND [1] using the BPM turn-by-turn data has mo-
tivated testing this approach in SOLEIL in collaboration
with CERN. We report on the first experiences towards the
correction of non-linear resonances in SOLEIL.

INTRODUCTION

First exploratory experiments were performed at
SOLEIL [2] in order to measure the leading driving terms
of the storage ring beam dynamics. Several working points
with and without undulators were chosen. A total current of
15 mA was stored in 53 subsequent bunches of the storage
ring. These measurements rely strongly on turn-by-turn
data of the transverse motion of the electron beam. This
latter was kicked at various amplitudes simultaneously in
horizontal and vertical planes using dedicated transverse
kickers [3]. The 2000 turn BPM data acquired on all the
120 BPMs using a new turn-by-turn filter were Fourier an-
alyzed using the SUSSIX [4] software.

LINEAR OPTICS

Linear optics is measured by the phase advance between
adjacent BPMs. The phase-beat, which is the difference
between measurement and model, is shown in Fig. 1. In
both planes the phase-beat is relatively small (A¢ 4 yms =
0.32°, A¢y rms = 0.44°). The vertical phase-beat shows
some periodic high peaks at the low beta regions.
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Figure 1: Phase beat for horizontal (top) and vertical (bot-
tom).

The beta function is calculated from the phase-advances
between three BPMs, as done in LEP [5].

The measured and model beta function for both planes
is shown in Fig. 2. Both planes show a good agreement
with the model, but in the horizontal plane the errorbars
are larger than in the vertical plane.

The beta-beat, which is the relative difference between
measurement and model, is shown in Fig. 3. It is an impor-
tant indicator of optics distortion. Maximum beta-beat of
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~ 6% and ~ 20%, respectively in vertical and horizontal
planes. The beta-beat is large and differs from the experi-
ence at SOLEIL, where the LOCO [6] algorithm is used.
This discrepancy seems to be due to the sensitivity of the
phase-based method, since also the relative measurement is
in the same order.
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Figure 2: Measured and model betatron function for hori-
zontal (top) and vertical (bottom) planes. The superperiod-

icity of the ring is four.
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Figure 3: Beta-beat for horizontal (top) and vertical direc-
tion (bottom). Maximum beta-beat of ~ 6% and ~ 20%,
respectively in vertical and horizontal planes.

Figure 4 shows histograms of the relative measurement
error of the beta functions. The maximum error on the ver-
tical plane is 4.0%.
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Figure 4: Histogram of the beta function error bar normal-
ized to the beta.
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THIRD ORDER RESONANCE

The horizontal spectral line with frequency 2Q) . is used
to prove the beam dynamics of sextupolar order. Figure 5
shows a plot of Ampyg versus the longitudinal location, for
two working points @, = 18.21,18.273. Ampso we define
as the height of the spectral line at the frequency 2Q) ... The
measurement is scaled with a factor of three to fit the sim-
ulation. Three reasons for the scale difference are the de-
coherence factors [7], possible kicker calibration error and
synchrotron radiation damping. The decoherence factor,
however, should be around two for the 2Q . line. The local
variations of the 2Q),. line around the ring show a qualita-
tive agreement with the model. The sources for local dis-
crepancy could be, BPM non-linearities [8] and real errors
such as optical and sextupolar errors. Before attempting
nonlinear corrections it should be verified that the effect of
BPM nonlinearities operating with this new filter in turn-
by-turn mode are negligible.
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Figure 5: Normalized Ampyy for @, = 0.21 (top) and
Q. = 0.273 (bottom).

FOURTH ORDER RESONANCE

The horizontal spectral line 3@, is used to prove the
beam dynamics of octupolar order. When approaching the
fourth order resonance one, naively, would expect an in-
crease in Ampsy. Ampsy we define as the height of the
spectral line at the frequency 3Q .. Figure 6 the spectrum
of the motion for measured and simulated data, for three
working points @, = 18.21,18.241,18.245. The simu-
lation consits of a single particle tracked for 2000 turns,
therefore zero tune spread in the spectrum. The observed
coupling in the measurement (Q),) seems to come from
electrical coupling. In Fig. 7 the normalized Ampgg is
shown versus the longitudinal location for the tunes, mea-
surement and simulation show different longitudinal varia-
tion. In both figures and both for measurement and simula-
tion, the variation of the octupolar lines when approaching
the fourth order resonance (18.25) is negligible. Phaseg
and phases, are evaluated, in figure 8 for both measured
and simulation. Phase,,,q is corresponding to the phase of
the spectral line at the frequency m@ ... For both data sets
phase; is multiplied by three, from the measurement it can
be seen that phasesy = 3phase;q. Figure 8 indicates that
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the octupolar line is dominated by the third order response
of the BPMs. See last section BPM calibration.
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Figure 6: Frequency spectum for horizontal tune approach-

ing 4*" order resonance. For measured (top) and simulation
taking into account the decoherence (bottom).
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Figure 7: Normalized Ampgso for measured (top) and sim-
ulation (bottom) approaching 4" order resonance.
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Figure 8: Phase;( and phasesq plotted versus longitudinal
location for both measured (top) and simulation (bottom)
for Q. = 0.21.
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UNDULATORS

SOLEIL is equipped with three in-vacuum (located at
121.67,210.11 and 232.43 m) and one long undulator (lo-
cated at 88.52 m). The two different types were examined
separately. Figure 9 shows the difference of the 2@Q) . spec-
tral line between the lattice with and without undulators. In
both cases a small effect can be observed in the sextupolar
line (2Q)..), indicating that the undulator could have sex-
tupolar errors. However the striking similarity between the
two cases cannot be yet understood.
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Figure 9: Plot showing the effect of the undulators on the
Ampyo. Long undulator (top) and in-vacuum undulators
(bottom).

BPM CALIBRATION

It is suspected that the BPMs could have a third order
response to the beam position, of the form:

3
Lobs = klinxreal + knon—lin'rreal (1)

With z,..; being approximated by Axcos(2rQN + ¢), the
k values are found by measuring the oscillation amplitude
and fitting a cubic polynomial with the expected amplitude
from the kicker calibration:

Aobs = klinATeal + knonflinAieal (2)

The data reconstruction is done by the approximate rela-
tion: ) '

Lreal = E(Eobs - %ﬂlzn‘rgbs (3)
Figure 10 shows a plot of the calibration factors for the
horizontal plane. The measured %, (~ 0.45) represents
the error in the linear calibration of the BPMs. From
simulation, the k,on_1in comes from beam dynamics
effects and is clearly smaller than the observed one.
From the reconstructed data a decrease in Ampsq for
both working points is observed, again suggesting that
the octupolar line is dominated by the BPM non-linearities.

SUMMARY AND OUTLOOK

The phase-beat measurement shows a good result. How-
ever, the beat-beat measurement seems to be too large com-
pared to the experience at SOLEIL. This could be due to
the quality of the BPM data or to the technique used [5].
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Figure 10: Linear and non-linear factor for BPM non-

linearty in the horizontal plane.
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The measurement of the sextupolar line (2@Q),) is show-
ing promising results. The measurement of the octupolar
line (3Q),) seems to be dominated by BPM non-linearities.
When looking at the undulators an effect on the 2Q) ,. spec-
tral line was observed, but further analysis is necessary. A
first attempt is made to reconstruct the BPM response, as-
suming a BPM non-linear response of the 37¢ order. The
new BPM turn-by-turn filter still needs further tuning in
order to improve its calibration and reproducibility. More-
over the flat chamber of the storage ring is the source of
strong non-linearities and saturation of the BPM, and BPM
electronic induces 5% crosstalk. Linear and non-linear cor-
rections of the storage ring should be considered and inves-
tigated in the future.
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