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Abstract 
   Chromaticity characterizes how optics parameters 
depend on momentum deviation. The optics parameters 
are tune, beta function and others. The chromaticity is 
actually defined by coefficients of the optics parameters 
expanding for the momentum deviation. The optics 
parameters including the chromaticity represent 
symplectic betatron motion, but are out of consideration 
for the synchrotron motion. We introduce Hamiltonian 
expression and 6 dimensional symplectic map for both of 
the betatron and synchrotron motion. The Hamiltonian 
and symplectic map are reconstructed by observable   
quantities, chromaticities. 

INTRODUCTION 
Particles with momentum deviations experience 

different focusing force from that of reference particle. 
They also experience focusing force depending on the 
momentum deviations in sextupoles put in a dispersive 
section, because an orbit displacement is induced due to 
the deviations.  

The linear oscillation of beam particles, betatron and 
synchrotron motions, are characterized by  
symplectic matrix, M6. The symplectic matrix 
contains 21 independent parameters. The matrix is 
parametrized with three tunes μx,y,z = 2πν x,y,z  and 18 
optics parameters. Needless to say, the tunes are 
independent of s, but optics parameters are dependent of 
s. 

Momentum deviation is δ = (p − p0 )/ p0  normalized by 
reference momentum p0 . As is well-known, δ  varieties 
slowly compare to betatron variables whose form 
is x β = (xβ , px,β ,yβ , py,β ), and it changes only in RF cavity. 
Therefore 4+1 dimensional expression, which consists of 
betatron motion in x-y plane and an orbit distortion due to 
the momentum deviation, is commonly used. The 
transverse coordinate of beam particle, x = (x, px ,y, py ), is 
expressed by 

x = xβ +ηδ                              (1) 
where the orbit distortion is characterized by the 
dispersion η = (η x , ′ η x ,η y , ′ η y ). 

The betatron coordinates are transferred by 4 × 4 
symplectic matrix. Now the matrix is parametrized by two 
betatron tunes ν x,ν y and 8 optics parameters 

αx,y ,β x,y ,ri (i = 1− 4) . The definitions of the optics 
parameters are as follows [1] 

M 2 = RM 2×2 R −1                        (2) 
where M2 is 4 by 4 transfer matrix which is block 
diagonalized by two 2 by 2 matrix with the form of Eq.(4) 
for x and y. 

M 2×2 =
M x 0
0 M y

⎛ 

⎝ 
⎜ 

⎞

⎠
⎟                        (3) 

M i =
cosμi + α i sin μi β i sin μi

−γ i sin μi cosμi − α i sin μi

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   (4) 

where i= x,y,z . R , which characterises x-y coupling, is 
parametrized by, 

R =
r0 I 2 −S2 R2

t S2

−R2 r0 I 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟                    (5) 

R2 =
r1 r2

r3 r4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟       S2 =

0 1
−1 0
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟              (6) 

where r0 = 1− det(R2 )  and I 2  is 2 by 2 unit matrix. 
Other optics parameters, 21-10-4=7, are 

ν s ,βz ,αz ,ζ x,y and ′ ζ x,y . αz ≈ 0  for accelerators with 
low ν s <<1. ζ x,y  and ′ ζ x,y  , which characterize a tilt of 
beam, are dispersion related to z  (not δ ). 

The change of the focusing force due to the momentum 
deviation reflected the transfer matrix and/or optics 
parameters. A typical example is the tune μ(δ )= 2πν , 
whose first derivative for the momentum deviation is 
called the chromaticity, 

dν (δ )
dδ

= ξ (δ )                              (7) 

The linear chromaticity is ξ (0). 
Needless to say, other optics parameters related to the 

betatron motion and x-y coupling, β(δ ) , α(δ ) and ri (δ ) , 
depend on the momentum deviation. The parameters are 
expanded by the momentum deviation δ , and their 
coefficients are generalized chromaticity. 

The chromaticity is equivalent to an orbit lengthening 
due to betatron amplitude [2]: that is, the betatron motion 
affects the synchrotron motion via the chromaticity. 
Higher order chromaticity also gives momentum 
compaction factor depending on the momentum 
deviation. 

In this paper, three dimensional symplectic expression 
for the chromaticity is discussed. The reason why the 
expression is worthful is summarized as follows. 

Recent simulation codes are based on three dimensional 
formalism.  The coordinates of particles are expressed by 
6 variables x, px ,y, py ,z,δ , and are tracked in the code. 
The expression for the chromaticity is implemented in the 
three dimensional codes. 
   In the beam-beam, space charge, electron cloud and 
impedance phenomena, the chromaticity sometimes 
important roles. The chromaticity expression, which is 
implemented in computer program codes for studying the 
phenomena, make possible to study the effects of the 
chromaticity.  The chromaticity is observable: that is, the 
optics parameters can be measured in a condition with a 
momentum deviation. While lattice design codes like 
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SAD and MAD calculate tune, twiss parameters and 
chromaticities. However the design values sometimes 
differ from measurements. The discrepancies in tune and 
twiss parameters are corrected by introducing fudge 
factors in the magnet strength for example. The correction 
is too complex for considering higher order chromaticity. 
In such case, it is better to construct to an accelerator 
model with the chromaticity expression. 
   Chromaticity causes synchro-beta resonances, which is 
synchrotron sideband of linear resonance [3]. Since the 
chromaticity expression is based on three dimensional 
Hamiltonian formalism, it is straightforward to discuss 
the synchro-beta resonance. 

LINEAR CHROMATICITY 
We first discuss the simplex expression of the linear 

chromaticity without x-y coupling to make clear the 
fundamental idea. The optics parameters are μ,α  and β . 
The index x or y is omitted in this section. 
   Three chromaticities are defined by expansion 
μ,α,β for δ  as follows, 

μ = μ0 +ξ μδ ≡ μ0 + μ1δ                      
β = β 0 +ξ βδ ≡ β 0 + β1δ                (8) 
α = α0 +ξαδ ≡ α0 + α1δ                      

The transfer matrix is written by the same form as 
Eq.(4). This expression is symplectic for the x  or y 
motion, but is not symplectic for the motion including 
longitudinal motion. 

We consider Hamiltonian which generates the 
chromaticity. It is easy to be found as follows, 

H I (x, px ,δ )=
ax2 + 2bxpx + cpx

2

2
δ            (9) 

The transformation with H I  is applied after or before 
the linear transformation, which represent the linear 
betatron and synchrotron motion. It has a quadratic form 
of betatron coordinates multiplied by the momentum 
deviation. H I = AJδ  give a pure momentum shift for the 
momentum deviation, but no β  or α  shifts. H I = Ax 2δ   
is regarded as a quadrupole insertion whose strength is 
linear for δ , thus it gives distortion to not only μ  but also 
β  and α . The Hamiltonian contains three variables, a,b 
and c, which should be related to the three chromaticities 
in Eqs.(8). A symplectic transformation for H I  is given 
by using a generating function, 

G2 (x, p x ,δ )= H I (x, p x ,δ )                 (10) 
where p x  and δ  are px  and δ  after the transformation. 
   The transformation using the Hamiltonian or generating 
function is expressed by 

x = x +
∂H I

∂p x
= x + (bx + cp x )δ                            (11) 

px = p x +
∂H I

∂x
= p x + (ax + bp x )δ                       (12) 

z = z +
∂H I

∂δ
= z + (ax 2 + 2bxp x + cp x

2 )/ 2         (13) 

δ = δ                                                                    (14) 

Eq.(11) and (12) are implicit relations of (x , p x )  for 
(x, px ). The explicit relation is obtained by solving the 
two series equation as follows, 

x 
p x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M H

x
px

⎛ 

⎝ 
⎜ 

⎞

⎠
⎟                            (15) 

where 

M H =
1+ bδ − acδ 2

1+ bδ
cδ

1+ bδ
− aδ

1+ bδ
1

1+ bδ

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

               (16) 

The transformations of Eq.(4) and/or (16) contain 
nonlinear terms for δ  which are necessary to maintain the 
symplectic condition in x  or y  motion. For the 
symplecticity containing the longitudinal motion, Eq.(13) 
and the identity transformation Eq.(14) are also necessary. 
The set of the transformations, Eq.(16) and Eq.(13), 
guarantee the symplectic condition, but another set, 
Eq.(4) and Eq.(13) break the symplectic condition. This is 
the reason we introduce the Hamiltonian as Eq.(9). 
Eq.(13) contains p , which is already determined by 
Eq.(16). 

Here we concern a relation of a,b,c  and α1 ,β1 ,ν 1 . 
The relation is obtained by comparison of the transfer 
matrices written by the chromaticities and by MH , 
namely 

M(δ )= M(0)M h(δ )                  (17) 
The coefficients a,b,c  is expressed by 

M H (δ )= M −1(0)M (δ )               (18) 
Since the RHS is linear for δ , MH  is taken into 

account of linear terms for δ , Now we have connection 
between a,b,c  and optics parameters, so Hamiltonian can 
be derived.  

XY COUPLED CHROMATICITY 
In this section, we take into account of x-y coupling for 

the betatron oscillation. The betatron motion is 
represented by 4 × 4 matrix, M4 (δ ). The parametrization 
of the x-y coupling is given in Eq.(2). Focusing force with 
the dependence on the energy deviation results the 4 by 4 
matrix with the dependence on it,  

M4 (δ )= R(δ )M(δ )R(δ )−1
             (19) 

Now the coupling parameters should depend on the 
energy deviation, and thus they are expanded as 

ν (δ )= ν nδ
n

n=0
∑ ,β(δ )= βnδ

n

n=0
∑

α(δ )= αnδ
n

n=0
∑ ,ri (δ )= ri,nδ

n

n=0
∑

           (20) 

where the coefficients are regarded as the chromaticity for 
x-y coupling. 

Hamiltonian(Generating function) which gives the 
chromaticity is expressed by 
H I (x, px ,y, py ,δ )=

n=1
∑ (anx2 + 2bnxpx + cn pn

2 + 2dnxy

+2enxpy + 2 fnypx + 2gn px py + uny2 + 2vnypy + wn py
2 )δ n / 2

(21) 
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≡ (Ax2 + 2Bxpx +Cpn
2 + 2Dxy + 2Expy

+2Fypx + 2Gpx py +Uy2 + 2Vypy +Wpy
2 )/ 2 

The 10 set of coefficients an ...wn  are related to αx,n , 
βx,n , μx,n , αy,n , βy,n , μy,n , and ri,n , i=1− 4 . Here 
chromaticity related to α , β , μ  and x-y coupling are not 
treated independently. 
   The transformation due to the Hamiltonian is derived by 
the same way for derivation of Hamiltonian from linear 
chromaticity, Eq.(11)-Eq.(14), 

.

x = x + Bx +Cp x + Fy + Gp y
px = p x + Ax + Bp x + Dy + Ep y
y = y + Vy +Wp y + Ex +Gp x
py = p y +Uy + Vp y + Dx + Fp x

                   (22) 

z = z + ∑
n=1

(anx 2 + 2bnxp x + cn p x
2 + 2dnxy

+2enxp y + 2 fn p x y + 2gn p x p y + uny 2

+2vnyp y + wn p y
2 )nδ n−1 / 2

δ = δ  

(23)

 

This relation is also described by same form, Eq.(18), 
replaced by 4 dimensional matrix MH which is calculated 
by Eq.(22). 
   It is possible to obtain the relation between αx,n, βx,n, 
μx,n , αy,n , βy,n, μy,n , ri,n  and an ...wn  from the complex 
nonlinear relation. The relations for n-th order an  are 
linear for given lower order a<n  relations. The 
coefficients of Hamiltonian are determined by 
comparison LHS coefficients with RHC coefficients, each 
power of δ expansion, in Eq.(18). 
   Until now, we use Hamiltonian expression to obtain 
symplectic map included betatron and synchrotron 
motion. This form is convenient when we consider 
synchro-beta resonance.  

DIRECT METHOD FOR CHROMATICITY 
   Symplectic map is obtained from chromaticity directly 
without using Hamiltonian. Now we want to make 
symplectic map for 6 dimensional coordinates, 

   x = M 4 (δ )x     ,     
z = z + g(x, px ,y, py ,z,δ )

δ = δ (24)
 

where M4 (δ ) (Eqs.(19)) is symplectic matrix for 4 
dimensions. The symplectic map should satisfy Poison 
Bracket relation, 

[x ,z ]= 0, [p x ,z ]= 0, [y ,z ]= 0, [p y ,z ]= 0    (25) 

[z ,δ ]=1                              (26) 
From Eq.(26), g  is independent of z . By taking this 
independence into consideration, deviation of 
∂xg = {∂xg,∂pxg,∂yg,∂pyg} is derived from Eqs.(25), 

∂x g = −M 4 (δ )t S(∂δ M 4 (δ ))x                  (27) 
Since M4 (δ )  is symplectic, following equation is 
satisfied, 

∂δ (M 4
t SM 4 )= (∂δ M 4

t )SM 4 + M 4
t S(∂δ M 4 )= 0    (28) 

Eq.(28) means that M 4
t S(∂δ M 4 ) is symmetric matrix. So, 

g is derived to one form with a constant of integration 
which depend on only momentum deviation, 

 

g = −xt M 4 (δ )t S(∂δ M 4 (δ ))x /2            (29)             
  

NONLINEAR DISPERSION 
   This formalism can be extended for nonlinear 
dispersion. The orbit is expanded by 

x = xβ + ηnδ
n

n=1
∑                          (30) 

Related Hamiltonian has a form as follows, 
Hη = ( ′ η x,nx−ηx,npx,β + ′ η y,ny−ηy,npy,β )δ n

n=1
∑

  
 (31) 

The transformation for Hη  is expressed by 

xβ = x + ηx,nδ
n

n=1
∑

  ,   
px,β = px − ′ η x,nδ

n

n=1
∑  

yβ = y + ηy,nδ
n

n=1
∑

  ,   
py,β = py − ′ η y,nδ

n

n=1
∑

   (32)
 

δ β =δ  
zβ = ( ′ η x,nx−ηx,npx,β + ′ η y,ny−ηy,npy,β )nδ n−1

n=1
∑  

The last equation expresses momentum compaction 
which depends on betatron motion and chromaticity. 
   The transformation and its inverse are performed for 
moving from the physical coordinates to the betatron 
coordinates and vice versa, respectively. 

CONCLUSION 
   We discussed symplectic expressions for chromaticities. 
Symplectic map is reconstructed from observable 
quantities, chromaticities. The symplectic map can be 
useful for 6 dimensional particle tracking simulations to 
study the synchro-beta resonance, beam-beam, space 
charge, impedance effects, and so on.  
   In general accelerator developing codes, MAD, SAD 
and many others, chromaticities are calculated for ideal 
lattice and/or that including errors. If people include 
beam-beam, instability and other codes into the general 
developing code, the effect of the chromaticities can be 
evaluated basically. However measured chromaticities 
sometimes (or everytime) disagree with the code 
prediction. It is smart to perform the simulation of the 
beam-beam, instability and other effects with this 
symplectic expression based on the measured 
chromaticities. 
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