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Abstract 
This paper presents a new variety of one-dimensional 

nonlinear integrable accelerator lattices with periodic and 
exponential invariants in coordinates and momenta. 
Extension to two-dimensional transverse motion, based 
on a recently published approach [1], is discussed.  

 

INTRODUCTION 
The integrable accelerator lattices represent a 

continuation of linear systems with Courant –Snyder 
invariants to the nonlinear domain, where the frequencies 
of betatron motion “strongly” depend on betatron 
amplitudes (the word “strongly” means that the spread of 
betatron tunes is comparable to the tune itself). This 
spread can help to advance beam intensities by 
introducing a very large Landau damping. Recently, a 
possible method to realize stable integrable motion in 
accelerators with 2D transverse magnetic field was 
suggested [1]. In principle, all 1D integrable lattices with 
short nonlinear lenses can be converted to 2D integrable 
lattices (we’ll show examples of this conversion later in 
this paper). Reference [2] presented a method to find a 
vast variety of 1D and 2D integrable systems with 
invariants, polynomial in coordinates and momenta. The 
same method was used to find invariants that are 
harmonic or exponential functions of coordinates and 
momenta. Here we briefly present the theory and the 
method, along with solutions for lattices having nonlinear 
kicks with the aforementioned invariants, and show the 
behaviour of these integrable lattices in the 2D case with 
transverse magnetic fields. 

1- AND 2-CELL INTEGRABLE LATTICES 
 The nonlinear map we discuss here consists of linear 

maps and 1 or 2 thin nonlinear lenses. The linear map has 
a betatron phase advance of /2 between thin nonlinear 
lenses and in the simplest 1-cell form is:  

),(

,

xfxp
px



 (1) 

where the bar sign denotes the new variables (papers [1,2] 
used somewhat different notations for that map, but it can 
be brought to (1) by a simple change of variables; this 
kind of map representation was used by E. McMillan 
when he discovered some integrable 1-cell maps in 1967 
(see Ref. 4 in [2])). For a 2-cell lattice we have the same 
map (1) but the nonlinear kicks can be different – it will 

give us additional families of integrable lattices. 
   Now we present the main trick, described in [2], to get 
vast families of integrable systems. We start with an 
invariant quadratic in momentum: 
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and add a nonlinear kick  )(/)( xAxBpp  , where 

the bar sign denotes the new variables, then Eq. (2), 
expressed in terms of the new momentum,  becomes 

   )()()(),( 2 xCpxBpxApxI  . (3) 

One can see that the expression (2) is transformed into (3) 
in such a way that is equivalent to changing the sign of 
momentum. This property of the invariant was called the 
Sign Reversal Property (SRP) and the nonlinear kick the 
Sign Reversal Function (SRF) [2]. Functions with the 
SRP properties are all invariants with nonlinear kicks that 
are their SRF functions if they are also symmetric 
functions of coordinates and momenta. That is obvious 
from (1): the linear transformation in (1) interchanges the 
coordinates and momentum while changing the sign of 
the latter. Adding the kick (SRF function) changes the 
sign of the momentum again, so the expression acquires 
the same form in the new variables, i.e. it is an invariant 
of the map (1).  Moreover, for the 2-cell map the 
symmetry property is not necessary: the interchanging of 
variables happens twice and any function with the SRF 
properties for two variables becomes an invariant for the 
map, where two kicks are the SRF functions of the 
invariant. As is clear from (2) and (3), any quadratic 
function in momentum and coordinate has SRF properties 
for both variables, so the most general form of quadratic 
invariant for 2-cell transformation is: 
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where a, b, c, d, e, f, g, h are arbitrary constants. The two 
kicks are: 
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   This method was used in [3] to find non-polynomial 

invariants of the form )()(),( pgxfpxI i
i

i , where 

fi and gi are arbitrary functions. Here we present the 
summary of that research. First, invariants of the form 

)()exp()()exp()(),( xCkpxBkpxApxI   (6) 

have the SRP with the kick 
kxAxBpp /))(/)(ln( .               (7) 

Second, if k is imaginary, and A, B are complex with 
 )()( xAxB (B is the complex conjugate of A), the 

invariant is a harmonic function of momentum: 
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)()exp()()exp()(),( xCpixApixApxI    . (8) 

Here , C(x) are real and the kick is taken from (7): 

ixAxAxf /))(/)(ln()(  ,               (9) 

and it is also a real function of the coordinates. 
  Now, the invariants can each have the forms (2), (6), (8) 
in momentum, and the A, B, C functions in these 
expressions can be functions of the coordinate in the same 
form – exponential, harmonic, and polynomial. We 
present an example of how to build the invariants and the 
nonlinear kicks out of chosen combinations. Let’s take the 
invariant as a quadratic polynomial in momentum and 
exponential function in coordinate: 
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where a, b… are arbitrary constants, and the invariant is 
taken at the beginning of the first linear transformation. 
Before the first kick the variables interchange and the 
momentum changes sign. Right before the first kick the 
invariant in the new coordinate and momentum is: 
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    The momentum transformation with SRF function is:  
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It changes the sign of the momentum. In the new 
variables the invariant after 1-cell is the old invariant (11) 
with interchanged variables. One more application of a 
linear map in the second cell yields invariant: 
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and it transforms into (10) in the new variables after the 
momentum transformation. The nonlinear kick (the SRF 
function) is 
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The phase space of this system with b=a=d=c=f=1, 
e=h=g=-1, and k=10 is shown in Fig. 1.  

 

Figure 1:  Phase space of the system (11). 

Having built the example of mixed polynomial-
exponential invariant (11), we present the general 
classification of all 2-cell invariants based on 3 functions: 
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where ai, bi, … are arbitrary constants, and 
3,,1  kji . 

There are six types of invariants which look like this: 
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where 3 lk . The functions fki are given by Eq. (15), 
while the functions gil are constructed from separate terms 
in the functions of Eq. (15):  
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and  *
21 )()( xfxf kk   if l=3; in other cases all 

coefficients are real. 
    For example, the (1, 2) case is given by (10). The kicks 
have to be calculated as in the example of Eq. (10) – the 
invariant has to be transformed to the lens, and the SRF is 
the kick at this point, etc. Among the invariants, there are 
symmetric cases (we later denote them as S) for which 
invariant returns to itself even after the first lens. Case 
S(3,3) is shown in Figure 2. 

 

Figure 2: Phase space of the 1-cell map with periodic 
integrable lens. 

In this case the one lens kick is: 
))5)/(exp()5)ln((exp()(  ixixixf ,   (18) 

and the initial conditions cover the phase space from -10 
to 10 in coordinate and momentum randomly with a step 
of the order of 0.1.  
 

CONTINUATION TO 2D CASE 
In [2] it is suggested how to continue all the 1D results to 
the 2D case, but the straightforward continuation yields 
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unstable systems because they end up always on sum or 
half-sum resonances. In [1] it was proposed to make 
different beta-functions in x and y at the locations of the 
lenses. It was found by the author later that the best way 
to obtain 2D stable regular motion is to make the 
following complex map:  
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where >1 or <1. If =1 then the two commuting 
integrals are known (see [2]), but otherwise the exact 
expression of invariant has not yet been found. Moreover, 
some trajectories are found to be chaotic [4]. This means 
that two analytic integrals don’t exist for map (19). But as 
was noted in [4], if one takes the 1-cell kick of the type 
(5), the motion in the x (if the y motion amplitude is zero) 
direction is integrable (and vice versa). This means that 
we are at least close to integrability, and it turns out that if 
the beta functions are separated by at least a few percent, 
and the closed orbit tune is far from resonance, the motion 
become stable and resonance-free in a large 4D volume.  
Figure 3 shows 4D trajectories for 3 sets of initial 

conditions with the kick 
15.0

4.1
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(19) and =1.25.   

    Even though the exact invariant is not known for this 
case, the behaviour of the trajectories is extremely regular 
for not so large amplitudes. There are no signs of resonant 
islands or unstable motion almost up to the pole in the 
kick denominator. This shows that this method of 
continuation of 1D systems to 2D lattices with real 
magnetic lenses is promising. Finally, we present the 
sinusoidal-exponential 4D phase space.  p 
   Figure 4 shows the case S(3,3) again for =1.25, but the 

kick corresponds to an exponential-sinusoidal system. In 
complex variables it is equal to  

 ))5)/(exp()5)ln((exp()( izizizf . 
 
  One can see that in the X plane the motion resembles 
that of Figure 2. In the Y plane the force is exponential 
and it is different from the motion in the horizontal plane. 
Unfortunately, the space is not entirely covered by regular 
trajectories. Contrary to Figure 2 where separatrices are 
infinitely thin, the separation bands in between of regions 
with the regular motion have a chaotic motion. Figure 5 
shows the space between eyes with regular motion. All 
the parameters are taken to be the same except for the 

initial conditions. One can see that the particle wanders 
between the regions with stable motion and its amplitude 
grows in a diffusion-like manner to very large values. 
 

CONCLUSION 
1-dimensional 1- and 2-cell integrable accelerator 

lattices with exponential and harmonic invariants are 
presented in this paper. It is shown how to continue these 
systems to 2D systems with large volumes of stable and 
regular motion. The problem of finding exact invariants 
for the stable 4D motion is not solved yet.  
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Figure 3: X (left) and Y phase spaces for 25 percent 
beta-function difference. 

  
Figure 4:  X (left) and Y(right) phase spaces for 25 
percent beta-function difference. 

 
Figure 5: X (left) and Y(right) phase spaces showing a 
chaotic net in between of islands with regular motion.  
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