
HIGH PRECISION BEAM ENERGY MEASUREMENT WITH 
CHERENKOV RADIATION IN AN ANISOTROPIC DISPERSIVE 

METAMATERIAL LOADED WAVEGUIDE* 

A.V. Tyukhtin#, St. Petersburg State University, St. Petersburg, 198504, Russia  
S.P. Antipov, ANL, Argonne, IL, 60439                                                                

A. Kanareykin, P. Schoessow, Euclid TechLabs LLC, Solon, Ohio 44139 USA 

Abstract 
A new method of measurement of charged particle 

energy is considered. This is based on measurement of 
frequencies of modes generated in a waveguide loaded 
with a cylindrical layer of an engineered or natural 
medium. This method can be realized with the help of 
different materials. Anisotropic materials with “plasma-
like” dispersive properties can be used for high precision 
energy measurements at relatively small values of the 
Lorentz factor γ . A thin layer of simple non-dispersive 
isotropic dielectric is convenient for measurement of 
larger values of γ . The range of values of γ  to which 
these techniques are sensitive can be extended through the 
use of resonant dispersive metamaterials.  

GENERAL RESULTS 
Cherenkov radiation is extensively used for the 

detection of charged particles and in beam diagnostics 
[1]. We have developed a new method of determination 
of the energy of charged particles based on measurement 
of frequencies of waveguide modes [2–6]. Metamaterials 
demonstrate advantages for this purpose compared with 
conventional media. Problems of development of 
metamaterials for Cherenkov detectors are discussed in 
ref. [7]. In the present paper, we consider some prospects 
for the use of both metamaterials and traditional 
dielectrics on basis of certain “macro-models”. This 
analysis assumes that the “metamedium” can be treated as 
possessing an effective permittivity or permeability. 

Unlike the work of refs. [2–6], we will now take into 
account the presence of a  vacuum channel and analyze 
the influence of the channel radius on the waveguide 
modes. Different models for the material of the 
Cherenkov radiator will be considered. The main focus is 
the case when the material of the cylindrical layer is a 
non-magnetic medium characterized by a diagonal 
permittivity tensor  
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The basic model of dispersion is of the form  

cεε =⊥ ,     ( ) 1222
|| 2

−
−+−= rdpc i ωωωωωεε ,      (2)    

where pω  is a plasma frequency, rω  is a resonant  
frequency, dω  is an attenuation parameters, and cε  is 
some constant exceeding 1. Some peculiarities of the 
particular case of a non-dispersive isotropic dielectric will 
be noted as well.  

It is assumed that the medium forms a cylindrical layer 
in the waveguide with some radius a . The main axis of 
the medium (i.e. the z -axis) coincides with the waveguide 
axis. A vacuum channel has radius b , and the thickness 
of the medium layer is bad −= . The charged particle 
bunch moves along the z -axis with a velocity zecV

rr
β= , 

and Lorentz factor ( ) 2121
−

−= βγ . The transverse 
dimension of the bunch is negligible, and longitudinal 
distribution of the charge is determined by the Gaussian 
function ( )( )22 2exp σζ− , where Vtz −=ζ  and σ  is 
much less than the typical wavelength. 

Our analysis is based on the mode expansion of the 
wave field behind the bunch:  
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where z,,φρ  are cylindrical coordinates. The mode  
frequencies mm πνω 2=  are determined by the equation  
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where  
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( )ξnJ  are Bessel functions, and ( )ξnI  are modified 

Bessel functions.  
For high precision measurement of beam energy, the 

dependence ( )γωm  should be sensitive, and the 
amplitudes of the modes should be not very small. 
Therefore it is better to use low frequencies (<30 GHz, as 
a rule) because of the exponential factor in (3).  

“PLASMA-LIKE” MATERIAL 
Previous publications [2–6] were devoted to the case of 

waveguide filled fully with anisotropic “plasma-like” 
( 0=rω ) medium. Now we consider the influence of 
vacuum channel for this model of the medium.  

It should be noted that obtaining “plasma-like” 
response of metamaterials at frequencies 1 – 30 GHz is 
not  a  simple  problem.   This  response  takes  place in a 
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Figure 1a: Dependence of the frequencies GHz)(1mν  on 
γ  in the case of anisotropic “plasma-like” medium filling 
the waveguide fully (above) or partially (below); 

cm10=a , GHz20=pν , 05.1=cε ; mode numbers m  
are indicated near the curves. 
 

 
Figure 1b: Dependence of the frequency GHz)(11ν  on γ  
in the same case for the channel radius values indicated 
near the curves (cm). 
 

system of infinitely thin periodic conductors if the electric 
field of the wave is parallel to the wires. However for 
other wave polarizations the formula for ||ε  is more 
complex because of the effects of spatial dispersion [8]. 
Some structures described by the formula (2) are found in 
ref. [9]; one of them consists of wires loaded with plates.  

Analysis based on the model (1) and (2) shows that 
there are two series of mode frequencies. The low-
frequency series ( 1mν ) can be generated under the 

condition 12 <cεβ , and the high-frequency series ( 2mν ) 

can be generated for 12 >cεβ . The frequency 11ν  is most 
convenient for measuring relatively small values of the 
Lorentz factor. Figures 1a and 1b show that choice of the 
radius of the vacuum channel can be used to obtain a 
desirable dependence ( )γν11 . For measuring γ  with high 
precision in some narrow range close to the limiting value 

maxγ , it is better to use a channel with a small radius. For 
measurement of γ  over a wider range, it is convenient to 
have a smoother dependence. This can be achieved by use 
of a larger of channel radius (5 – 9 cm for Fig.1b). It is 
interesting that the dependence ( )γν11  is close to linear 
for a thin enough “plasma-like” layer (Fig.1b, cm9=b ).  

NON-DISPERSIVE MEDIA AND 
RESONANT MATERIALS 

A “plasma-like” medium is convenient for measuring 
relatively small γ  but not very comfortable for bigger γ  
because this requires very small values of cε . It is 
interesting that good results can be achieved through the 
use of non-dispersive isotropic dielectrics 
( const===⊥ εεε || ). The key factor for this technique 
consists in optimization of the thickness of the layer d .  

Dependence of )(γν m  on γ increases with decreasing 
d . Therefore, the use of thin layers of simple dielectric 
provides essential advantages. Of course, there is some 
limitation on decreasing d  because the amplitude of the 
mode that is considered must be large enough for 
measurement. However, as a rule, this limitation is not 
very restrictive.  

Figures 2a-b show mode frequencies in the case of a 
simple dielectric layer. One can see that using layers with 

mmd 102 ÷=  allow determination of values of 
3010~ ÷γ  at least (for other parameters as indicated). 

For mmd 1≤  the frequencies exceed 30 GHz, and the 
amplitudes driven by a realistic bunch can be too small 
for measurement.  

A shortcoming of this technique consists in its 
limitation on γ   from below. For example, if mm5.9=b  
then the range 105 << γ  corresponds to very high 
frequencies  (Fig.2)  and, accordingly,  small   amplitudes 
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Figure 2a: Dependence of the frequencies GHz)(1mν  on 
γ  in the case of non-dispersive isotropic dielectric for 
thick (above) and thin (below) layers. Numbers of modes 
m  are indicated near the curves; cm10=a , 05.1=ε . 
 

 
Figure 2b: Dependence of frequency GHz)(1ν on γ  in the 
same case for the channel radius values indicated near the 
curves (cm).  
 

 

for bunches with mm3≥σ . This defect can be partially 
eliminated with the use of a resonant material. Such a 
metamaterial can be made in the form of a periodic 
system of short thin parallel wires.  

Figure 3 demonstrates the effect of resonant dispersion 
in the case of a relatively thin layer of material. The 
medium parameters indicated correspond to wire length 
~5mm, wire radius ~0.5mm, and the transverse period 
~5mm. One can see that the essential dependence )(11 γν  
takes place at least for 305 << γ , and the frequency does 
not exceed 30 GHz. Other frequencies )(1 γν m  are 
practically constant in this situation.  

In conclusion, it should be underlined that application 
of different materials and optimisation of the layer 
thickness give good prospects for creation of a technology 
for noninvasive bunch diagnostics for different energy 
ranges.  

 
Figure 3: Dependence of the frequencies GHz)(1mν  on 
γ  for thin layer of resonant anisotropic material. 
Numbers of modes are indicated near the curves; 

cm10=a , 05.1=cε , GHz20=pν , GHz30=rν . 
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