
MONTE CARLO MEAN FIELD TREATMENT OF MICROBUNCHING
INSTABILITY IN THE FERMI@ELETTRA FIRST BUNCH

COMPRESSOR

G. Bassi, University of Liverpool and the Cockcroft Institute, Liverpool, UK ∗

J. A. Ellison, K. Heinemann, University of New Mexico, Albuquerque, NM, USA †

R. Warnock, SLAC National Accelerator Laboratory, Menlo Park, CA, USA ‡

INTRODUCTION

Bunch compressors, designed to increase the peak cur-
rent, can lead to a microbunching instability with detrimen-
tal effects on the beam quality. This is a major concern
for free electron lasers (FELs) where very bright electron
beams are required, i.e. beams with low emittance and en-
ergy spread. In this paper, we apply our self-consistent,
parallel solver to study the microbunching instability in the
first bunch compressor system of FERMI@Elettra.

Our basic model is a 2D Vlasov-Maxwell system. We
treat the beam evolution through a bunch compressor using
our Monte Carlo mean field approximation. We randomly
generate N points from an initial phase space density. We
then calculate the charge density using a smooth density
estimation procedure, from statistics, based on Fourier se-
ries. The electric and magnetic fields are calculated from
the smooth charge/current density using a novel field for-
mula that avoids singularities by using the retarded time as
a variable of integration. The points are then moved for-
ward in small time steps using the beam frame equations of
motion, with the fields frozen during a time step, and a new
charge density is determined using our density estimation
procedure. We try to choose N large enough so that the
charge density is a good approximation to the density that
would be obtained from solving the 2D Vlasov-Maxwell
system exactly. We call this method the Monte Carlo Par-
ticle (MCP) method. A detailed discussion can be found in
[1].

A common approach to study the microbunching in-
stability consists in calculating a gain factor for a given
initial modulation wavenumber k0 [2, 3]. The gain fac-
tor is defined as | ρ̃(kf , sf )/ρ̃(k0, 0) |, where ρ̃(k, s) =∫

dz exp(−ikz)ρ(z, s) and kf = C(sf )k0 for a given ini-
tial wavelength of λ0 = 2π/k0. Here ρ(z, s) is the lon-
gitudinal spatial density, C(s) = 1/(1 + hR56(s)) is the
compression factor of the chicane, s is arc length along the
reference orbit, sf is the value of s at exit of the chicane,
and h is the chirp factor.

The function ρ̃(k, s) is computed in our full nonlinear
self-consistent scheme, but can also be approximated in
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some cases through a solution of the linearized Vlasov
equation [1]. The linearized Vlasov solution can in turn
be obtained as the solution of a 2D linear integral equa-
tion, provided that the collective force can be described by
an impedance or equivalent wake field. The 2D integral
equation reduces to the 1D integral equation of [2, 3] for
the function ρ̃(C(s)k0, s) of s if the initial distribution de-
scribes a coasting beam with linear energy chirp.

Determining an approximate solution of the equation by
iteration, Huang and Kim derived an analytic formula for
the gain in [2, Eq. (38)].

We compare this gain formula with the gain from our
full nonlinear MCP computation. We do this in the con-
text of the spectrum ρ̃(k, s) at s = 0 and sf . Agreement is
good at medium wavelengths, in spite of the fact that our
collective force is computed in a more detailed way than
that of [2], the latter being derived from the impedance for
steady state coherent synchrotron radiation (CSR) without
account of finite magnet length. At long wavelengths we
begin to see the breakdown of the coasting beam assump-
tion. At short wavelengths, as little as 40μm in calculations
to date, there are deviations from the analytic gain formula.
The source of discrepancy might be due to nonlinearity, or
to the different models of the collective force, or both.

FERMI@ELETTRA BUNCH
COMPRESSOR STUDIES

The FERMI@Elettra first bunch compressor system was
proposed as a benchmark for testing codes [1]. The sys-
tem consists of a 4-dipole chicane between rf cavities and
quadrupoles. Here we limit our study to the chicane with
parameters as listed in Table 1. The results are obtained in
the free space case; i.e., neglecting shielding effects from
the vacuum chamber. The lengths L1, L2 and Lb are in
terms of the lab frame Z-variable, thus the total length of
the chicane is 8m. The total arc length traversed by the
reference particle is sf = 8.029m.

Our initial beam frame phase space density is

f(z, pz, x, px, 0) = (1 + ε(z))a0(z, pz, x, px) , (1)

where

a0(z, pz, x, px) = μ(z)ρc(pz − hz)
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Table 1: Chicane Parameters and Beam Parameters at First
Dipole

Parameter Symbol Value Unit
Energy reference particle Er 233 MeV
Peak current I 120 A
Bunch charge Q 1 nC
Norm. transverse emittance γε0 1 μm
Alpha function α0 0
Beta function β0 10 m
Linear energy chirp h -12.6 1/m
Uncorrelated energy spread σE 2 KeV
Momentum compaction R56 0.057 m
Radius of curvature r0 5 m
Magnetic length Lb 0.5 m
Dist. 1st-2nd, 3rd-4th bend L1 2.5 m
Dist. 2rd-3nd bend L2 1 m

× exp[−(x2 + (α0x + β0px)2)/2ε0β0]/2πε0 ,

ρc(pz) = exp[−p2
z/2σu]/

√
2πσu ,

μ(z) = [tanh((z + a)/b) − tanh((z − a)/b)]/4a ,

ε(z) = A cos(2πz/λ0) = A cos(k0z) . (2)

Here h is the linear chirp parameter and μ is a smooth flat-
top density of width ≈ 2a. Thus the smooth a0 is perturbed
by a modulation, ε, with wavelength λ0 and small ampli-
tude A. In the calculations we fix A = .05, a = 1180μm
and b = 150μm and vary λ0.

An important part of our current calculation is that we
have found an s-independent grid for the spatial density
that allows us to minimize the number of grid points. The
spatial density is stationary in this grid for σu = σpx0 = 0
and no self forces.

We calculate the evolution of the 2D spatial density
given the initial beam frame phase space density of Eq. (1).
In Fig. 1 (right) we show the initial longitudinal density for
λ0 = 100μm. We present results for several perturbation
wavelengths λ0. We present results for the 2D spatial den-
sity but our main focus will be on the longitudinal density
ρ(z, s) and its Fourier transform ρ̃(k, s). In particular, we
calculate the gain factor | ρ̃(kf , sf )/ρ̃(k0, 0) | for an ini-
tial modulation of wavelength λ0 = 2π/k0 ≥ 40μm and
present spectra ρ̃(k, sf ) for several λ0.

In Fig. 1 (left) we compare the analytical gain fac-
tor given in [2], with the gain factor calculated numeri-
cally with our solver (red squares). The formula from [2]
takes into account only CSR effects whereas our Vlasov-
Maxwell approach automatically includes the effects of
CSR and space charge. Because our approach is much
more detailed than the analytic approach we did not ex-
pect detailed agreement. Nonetheless, there does seem to
be rough agreement in the 100 − 450μm range. To gain
some understanding we consider the full spectra. Spectra
for λ0 = 300μm are shown in Fig. 2. In Fig. 2 (left) we

show the initial, s = 0, spectra for unperturbed (A = 0)
and perturbed (A = 0.05) distribution. We note that two
spectra are essentially the same until k ≈ 19,000. After
this the unperturbed spectrum is essentially zero whereas
the perturbed spectrum has a substantial contribution in a
neighborhood of the perturbed wavenumber k0 =20,944.
We note however that the peak is at a slightly larger k
value. We see a similar structure for the evolved spectra
at s = sf in Fig. 2 (center). The two spectra are the same
until k ≈ 60,000. After this the unperturbed spectrum is
≈ 0 and the perturbed spectrum has a substantial contri-
bution in a neighbourhood of the perturbed but amplified
wavenumber C(sf )k0 =74,247 (C(sf ) = 3.54). The am-
plified wavenumber is slightly to the left of the peak. This
raises the issue of how the gain should be defined from the
spectrum. One possibility would be to take the ratio of the
peak values. Fig. 1 (left) shows the ratio of the peak val-
ues (blue dots) as well as the ratio of the values at k0 and
k0C(sf ). Perhaps a better approach would be to consider
some integral of the spectrum.

The spectra for λ0 = 100μm are shown in Fig. 2 (right).
Here we see considerable enhancement and structure at the
end of the chicane near the amplified k0. Perhaps defining
the gain as the ratio of the values at the arrows misses the
mark in two ways. The arrow at s = sf is to the right of
the peak and it does not take into account the considerable
structure between 200,000 and 250,000.

At 80μm it appears that our calculation shows a decrease
in the gain as indicated by the red squares and blue dots of
Fig. 1 (left). However, this may be misleading as a compar-
ison of the spectra at 80μm, Fig. 3 (left), and λ0 = 100μm,
Fig. 2 (right), shows.

At 60μm, Fig. 3 (center), the situation is similar to the
80μm case.

At 40μm the amplification of the initial modulation de-
creases as indicated by the spectra in Fig. 3 (right) and by
the longitudinal density in Fig. 5 (right).

Our goal is to go down in λ0 as far as possible and we
have made an important advance in this direction with our
new stationary grid. Currently we are running on Encanto
at the New Mexico Computing Applications Center (NM-
CAC) and on Franklin at the National Energy Research Sci-
entific Computing Center (NERSC). Our run at 40μm takes
≈ 5 hours using 800 processors. This, along with memory
considerations, currently limits the minimum value of λ0

we can study.
We have also studied the spectra for values of λ0 greater

than 300μm. At λ0 = 400μm we begin to see an overlap
between the perturbed and unperturbed spectra and the ar-
rows are quite a bit to the left of the peak values. This is
the beginning of the break down of the coasting beam as-
sumption, where there are only few of oscillations on the
flattop. The overlap is illustrated at 600μm in Fig. 4 (left
and center frames). In Fig. 1 (left) we see that at 400μm
the red and blue markers are very close and at 600μm the
blue marker is almost on the analytic curve, but these are
likely fortuitous results.
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Figure 1: Left: gain factor from analytical formula in [2] (curves) and from our Vlasov solver (red squares and blue dots).
The numerical gain is calculated as the ratio of the values of the spectrum at k0 and k0C(sf ) (red squares) and as the
ratio of the peak values of the spectrum (blue dots). Right: longitudinal spatial density at s = 0 for an initial modulation
λ0 = 100μm.

The effect of the modulation on the average longitudinal
force (mean power) and on the transverse emittance is very
small for all values of λ0, details are in [1].

In Fig. 4 (right) and Fig. 5 we show the longitudinal den-
sity for λ0 = 100, 80, 60 and 40μm. As already shown in
the discussion of the spectra, an amplification of the initial
modulation of A = 0.05 is clearly visible. We note that
the amplification is roughly constant for λ0 = 100, 80 and
60μm, and decreases at 40μm.

In Fig. 6 and Fig. 7 (left) we show the 2D spatial density
at s = sf for λ0 = 200, 100 and 80μm. In Fig. 7 (right)
and Fig. 8 we show the longitudinal force, which is propor-
tional to E · t, at s = sf for λ0 = 200, 100 and 80μm.
Notice that the longitudinal force is amplified accordingly
to the microbunching structure in the 2D spatial density.

OUTLOOK AND FUTURE WORK

The study of the gain factor at short wavelengths is com-
putationally expensive. Moreover, the increased length
of the 3D arrays needed to store the history of the
charge/current densities leads to intensive memory usage.
We are attempting to improve the Monte Carlo integra-
tions by trying variance reduction techniques, which build
on the central limit theorem, and also by trying quasi-
random sequences (also called low-discrepancy sequences)
in place of pseudo-random sequences. Quasi-random se-
quences allow one to break the “curse of dimensionality” in
grid-based multi-dimensional integration, giving a true er-
ror bound (i.e., not probabilistic) of order (logN )k−1/N ,
with only logarithmic dependence on the dimension k of
the space [1].

As an alternative to MCP, where the Fourier coefficients
are calculated with Monte Carlo integrations, we are inves-
tigating a much faster scheme based on the standard PIC
procedure of charge deposition to a grid, where the Fourier
coefficients are calculated with quadratures. A compari-

son of this method with a standard filtering method based
on wavelets is discussed in [4]. We are also pursuing ker-
nel density estimation methods from statistics. These are
closely related to quasi-interpolation methods from scat-
tered data approximation [1].

Other improvements on our agenda are a different choice
of integration variables for the field calculation and the op-
timization of the algorithm to fix the relevant support of the
integrand in the field formula.

Studies are in progress to investigate wavelengths shorter
than λ0 = 40μm and different amplitudes A. An im-
portant prediction of the gain factor formula from [2] is
that increasing the uncorrelated energy spread reduces the
gain factor. This led to a proposal, the laser heater, to in-
crease the uncorrelated energy spread within FEL tolerance
in order to damp the microbunching instability without de-
grading the FEL performance. An analysis of this effect
together with the complete study of the FERMI@Elettra
benchmark bunch compressor system will be discussed in
a forthcoming paper.
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Figure 2: Left: spectra for λ0 = 300μm with and without perturbation at s = 0. Center: spectra for λ0 = 300μm with
and without perturbation at s = sf . Right: spectra at s = 0 and s = sf for λ0 = 100μm.
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Figure 3: Spectra at s = 0m and s = sf , for λ0 = 80μm (left) and λ0 = 60μm (center) and λ0 = 40μm (right).
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Figure 4: Left: spectra for λ0 = 600μm with and without perturbation at s = 0. Center: spectra for λ0 = 600μm with
and without perturbation at s = sf . Right: longitudinal density at s = sf for λ0 = 100μm.
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Figure 5: Longitudinal density at s = sf for λ0 = 80μm (left), λ0 = 60μm (center) and λ0 = 40μm (right).
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Figure 6: 2D spatial density in grid coordinates at s = sf for λ0 = 200μm (left) and λ0 = 100μm (right).

Figure 7: Left: 2D spatial density at s = sf for λ0 = 80μm in grid coordinates. Right: longitudinal force in grid
coordinates at s = sf for λ = 200μm.

Figure 8: Longitudinal force in grid coordinates at s = sf for λ0 = 100μm (left) and λ0 = 80μm (right).
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