
RECENT IMPROVEMENTS TO CHEF, A FRAMEWORK FOR
ACCELERATOR COMPUTATIONS ∗

J. -F. Ostiguy and L. P. Michelotti
Fermi National Laboratory, Batavia, IL 60510, USA

Abstract

CHEF is body of software dedicated to accelerator related
computations. It consists of a hierarchical set of libraries
and a stand-alone application based on the latter. The im-
plementation language is C++; the code makes extensive
use of templates and modern idioms such as iterators, smart
pointers and generalized function objects. CHEF has been
described in a few contributions at previous conferences.
In this paper, we provide an overview and discuss recent
improvements.

INTRODUCTION

Formally, CHEF refers to two distinct but related things:
(1) a set of class libraries (2) a stand-alone application
based on these libraries. The application makes use of
and exposes a subset of the capabilities provided by the
libraries.

CHEF has its ancestry in efforts started in the early
nineties. At that time, A. Dragt, E. Forest [2] and others
showed that ring dynamics can be formulated in a way that
puts maps rather than Hamiltonians, into a central role. Au-
tomatic differentiation (AD) techniques, which were just
coming of age, were a natural fit in a context where maps
are represented by their Taylor approximations.

The initial vision, which CHEF carried over, was to de-
velop a code that (1) concurrently supports conventional
tracking, linear and non-linear map-based techniques (2)
avoids “hardwired” approximations that are not under user
control (3) provides building blocks for applications.

C++ was adopted as the implementation language be-
cause of its comprehensive support for operator overload-
ing and the equal status it confers to built-in and user-
defined data types.

It should be mentioned that acceptance of AD techniques
in accelerator science owes much to the pioneering work
of Berz [1] who implemented –in fortran – the first pro-
duction quality AD engine (the foundation for the code
COSY). Nowadays other engines are available, but few are
native C++ implementations. Although AD engines and
map based techniques are making their way into more tradi-
tional codes e.g. [5], it is also probably fair to say that map-
oriented codes are still perceived as a specialized niche.

∗Work performed under Fermi Research Alliance Contract DE-AC02-
07CH11359 with the United States Department of Energy.

AUTOMATIC DIFFERENTIATION

Analytic nonlinear maps can be approximated locally by
Taylor series expansions in phase space coordinates. The
transfer map through an element or sequence of elements
can be represented, to some arbitrary order k, by a finite
set of numbers: the numerical values of the map deriva-
tives. AD techniques allow convenient and efficient com-
putation and manipulation of such representations. For ex-
ample, consider the numerical values of a function f and
its derivatives up to order k at some at reference point x0.
If a composition h = g ◦ f is formed, then all those quanti-
ties can be calculated exactly for h. The rules for carrying
this out are the same for functions of either real or complex
variables.

To implement this in an object-oriented language, a new
data type is created by aggregating the values of a function
and its derivatives at x0, up to some order. Basic operations
on the new type are then defined: e.g. the rules for multi-
plication are a generalization of the familiar Liebnitz’s rule.
Note that the algebra of numerical derivatives is the same
as that of polynomials (truncated to the same order).

In the context of CHEF, functionality related to auto-
matic differentiation is contained in the mxyzptlk library.
The library makes no reference to accelerator concepts and
can be used independently. Suggestive of a closely re-
lated mathematical concept, the primary data type is called
Jet. Through judicious use of templates and implicit con-
versions, both real and complex Jets are supported and
can be mixed. The Jet class and its associated function-
ality are used to construct other classes corresponding to
Hamiltonian perturbation theory concepts i.e. Mapping,
LieOperator etc.

A Taylor polynomial in m variables of order k has
(m+k)!

m!k! terms. Even at modest order, this is not a small
number. Attention to efficiency and memory management
is key to a successful implementation. Accordingly, the
internals of mxyzptlk have been carefully optimized. Ex-
tensive use of templates and modern C++ idioms result in
compact code not obscured by the mechanics of memory
management.

A Jet is implemented as a contiguous sequence of
“terms” each comprised of a coefficient and a pointer into
an ordered table whose entries are monomial exponent tu-
ples. The representation is sparse, that is, null terms are not
stored. Jet multiplication, which typically dominates cpu
usage, is implemented by accumulation of monomial prod-
ucts in a reserved area containing entries for all possible
monomials. Table lookup is used to determine monomial

TU2PBC02 Proceedings of PAC09, Vancouver, BC, Canada

674

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques

product indices. Specialized memory allocation and recy-
cling strategies are employed for terms.

By design, the number of variables and the reference
point are not hardwired, but rather encapsulated in a
JetEnvironmentobject specified at runtime. Multiple en-
vironments can exist within the same program.

As a rough indication of performance, a 6th order map
for a ring comprising a few hundred elements can be com-
puted in a few minutes on a typical desktop machine. At
first order, where a Jet carries the same information as
traditional transfer matrices, the performance penalty com-
pared with the latter is minimal.

BEAMLINES

Beamlines are naturally described hierarchically. Inter-
nally, CHEF models a beamline as a container of smart
pointers to element instances. A beamline inherits from
the base element type, allowing beamlines to contain other
beamlines, recursively, to arbitrary depth. From a com-
puter science viewpoint, a beamline is a single-rooted tree
structure. In order to take advantage of a well-documented
and predictable interface, beamline elements are accessed
using a collection of iterators modeled after the STL iter-
ators. Single level forward and reverse iteration as well
as depth-first and breath-first hierarchical traversal are sup-
ported. Facilities are provided to select elements, edit or
transform beamlines in a variety of ways. Of interest is
that selected elements may be subdivided longitudinally at
user-specified intervals. One application for this is the in-
troduction of localized space charge kicks. CHEF allows
individual elements to be displaced and rotated. One dis-
tinctive feature is that functionality is provided to handle
either small perturbations or general geometry changes. In
both cases, the code determines appropriate local coordi-
nate transformations. While in the former case, the trans-
formation depends only on the targeted element. in the lat-
ter, it also depends on its nearest neighbors.

A capability to determine particle loss caused by fi-
nite size apertures has recently been implemented. Two
types of apertures are supported (elliptical and rectangu-
lar). To minimize overhead when concrete apertures can
be ignored, apertures are implemented as a decorator for
Propagator objects which are described below. CHEF
currently provides stable and fairly complete support for
the standard MAD8 and XSIF formats, including symbolic
expressions, macros, and arbitrary level file inclusion. A
parser for the MADX format is under development and
should be available soon. The parsers are implemented as
fully reentrant GLR parsers using bison and flex.

PARTICLES AND BUNCHES

CHEF was initially focused on proton dynamics. Later,
the code base started being used to model electron linacs
and this motivated a more consistent and general inter-
nal treatment of particles and bunches in order to include

wakefield effects. Specifically, CHEF provides two abstract
base types Particle and JetParticle from which all
concrete particle types such as Proton or JetElectron
are derived. Each particle type has a phase space state at-
tribute; the basic difference between a Particle and a Jet-
Particle is that the state of the latter is an array of Jets
rather than scalars. All propagation algorithms are consis-
tently templated on a parameter which can be Particle or
JetParticle. In this manner, the exact same same code is
used both for particle tracking and map generation without
runtime penalty. One may also propagate ParticleBunch
and JetParticleBunchwhich are, as their name suggest,
containers for particles. Both types of containers are en-
dowed with STL-style iterators. Additional functionality is
provided to populate bunches according to common statis-
tical distributions, to compute projections, moments, and
so forth.

PROPAGATION PHYSICS

CHEF strives to separate the details of propagation
physics from beamline element description that is, to make
propagation physics a runtime choice. For each element,
propagation physics is handled, in local coordinates, by a
procedure encapsulated into a Propagator object. A de-
fault set of Propagators is provided: exact for dipoles and
drifts; based on sequences of thin kicks for others. In some
instances, it can be advantageous to treat specific elements
differently by assigning custom propagators to them (e.g.
a pre-computed map). Alternatively, a different set of de-
fault propagators may be used in order to introduce domain
specific approximations.

ANALYSIS

As expected, CHEF provides facilities to compute opti-
cal lattice functions. Both standard (uncoupled) and gen-
eralized (coupled) lattice functions may be computed for
either rings or beamlines. Although the map based tech-
niques do not offer special advantage over traditional ma-
trix codes for basic linear optics, the fact that high order
maps are available and can be operated on makes it pos-
sible to generalize computations of quantities such as dis-
persion, chromaticities or momentum compaction beyond
first order. LieOperator objects (provided by mxyzptlk)
are used to implement the normal form procedures devel-
oped by Forest and Irwin [2]. Fig. 1 shows one example:
orbits in longitudinal phase space are first displayed in stan-
dard (φ, E) coordinates and subsequently in normal form
coordinates, transformed to three different orders. As the
order increases, the range over which orbits look circular
becomes larger until it effectively fills the central stable re-
gion. Outside the separatrix, orbits become distorted but
the transformations are not intended to be applied in this
region.

Proceedings of PAC09, Vancouver, BC, Canada TU2PBC02

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques 675

Figure 1: Longitudinal phase space orbits displayed in
standard and normal form coordinates at orders 1,3 and 7.

Embedded Database

One recurring practical issue with accelerator codes is
the bookkeeping involved in storing and keeping track of
computed quantities for future reference, comparison pur-
poses or as inputs to other computations. For that pur-
pose, we have found it advantageous to take advantage of
SQLite [3], a lightweight and fast embedded SQL database
engine. To the extent that the database metatada describes
organization and data types, the data sets are automatically
self-describing. Databases can be saved in a well docu-
mented binary format. A collection of readily available
tools can be used to query, sort, browse and database con-
tents.

PYTHON BINDINGS

Many scientific applications are now structured as a high
level “steering” or “control” module, written in an inter-
preted language with computationally intensive function-
ality implemented in a traditional compiled language and
made available through a dedicated binding layer. The
main advantage of this approach is that most applications
involve a substantial amount of logic and bookkeeping that
can be implemented, modified and debugged more quickly
in an interpreted language. With that in mind, a fairly
comprehensive set of python bindings has been developed,
to make the CHEF libraries functionality accessible from
python scripts. As a scripting language, Python repre-
sents a good match for C++: it has a compatible notion of
class and it also provides support for operator overload-
ing and the concept of iterator. Python is well-supported
within the scientific community. Synergia [6], a par-
allel code used to model beam dynamics in presence of
3D space-charge fields, imports functionality from CHEF
through its python interface.

APPLICATION TO LINACS

CHEF has been adapted for high energy linacs, and in
particular, has been used to study emittance preservation
issues. While the map machinery is a less compelling fea-
ture when dealing with single pass machines, CHEF pro-
vides needed generic infrastructure and is quite capable
as a conventional tracking tool. To handle linac simu-
lations, an accelerating structure element, a capability to
handle wakefields and a facility to establish reference tra-
jectories in the presence of acceleration have been added.
Detailed comparisons with linac specific codes were per-
formed. Small, but nevertheless significant discrepancies
were observed and mostly traced to inconsistent conven-
tions and definitions. The issues were progressively un-
derstood, and excellent agreement was confirmed. As an
example, Fig. 2 shows a comparison, for a version of the
International Linear Collider lattice, of the vertical emit-
tance evolution predicted by CHEF to that of predicted
by Lucretia [4], a linac code developed at SLAC. In
this comparison, all quadrupoles and accelerating struc-
tures have been subjected to identical sets of random mis-
alignments. Transverse and longitudinal wakefields are in-
cluded. Vertical corrector excitations are set to values de-
termined by an emittance growth minimization algorithm.

 1.5e-08

 2e-08

 2.5e-08

 3e-08

 3.5e-08

 4e-08

 0 50 100 150 200 250

V
er

tic
al

 E
m

itt
an

ce
 [m

-r
ad

]

BPM No

CHEF vs Lucretia: Vertical Emittance with Wakefields On

CHEF Wake on
Lucretia Wake on

Figure 2: Comparison of predicted vertical emittance evo-
lution between CHEF and Lucretia.

REFERENCES

[1] M. Berz, Particle Accelerators 24 (1989) 109-124

[2] E. Forest, “Beam Dynamics, A new Attitude and Frame-
work”, Harwood Academic Publishers, 1998 and the refer-
ences therein.

[3] http://www.sqlite.org.

[4] P. Tenenbaum, Lucretia: A Matlab-Based Toolbox for the
Modeling and Simulation of Single-Pass Electron Beam
Transport Systems, PAC 2005, Knoxville, TN

[5] P. K. Skowronski, F. Schmidt, E. Forest, Advances in MAD-X
Using PTC, PAC 2007, Albuquerque, NM

[6] J. Amundson et al., Synergia: A 3D Accelerator Modelling
Tool with 3D Space Charge, J. Comp. Phys., 211, 11 (2006),
pp 229-248.

TU2PBC02 Proceedings of PAC09, Vancouver, BC, Canada

676

Beam Dynamics and Electromagnetic Fields

D05 - Code Developments and Simulation Techniques

