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Abstract 
A possible solution for avoiding transition energy 

crossing is a lattice with a negative momentum 
compaction factor. The lattice developed for this purpose 
is based on the resonantly correlated curvature and 
gradient modulations in arcs with integer tunes in 
horizontal or both planes, and is known as the “resonant” 
lattice. This method was first adopted for the TRIUMF 
and Moscow Kaon Factories project [1,2]. It was then 
applied in the SSC low energy booster [3], the CERN 
Neutrino Factory [4], and in the Main Ring of the 
Japanese proton accelerator research complex facility 
[5,6]. For the superconducting option of the High-Energy 
Storage Ring lattice in the FAIR project, the same 
principle was also applied [7]. It is also one of the 
candidates for PS2 in CERN [8]. Due to its special 
features, the “resonant” lattice can also be used as a lattice 
with stochastic cooling where different arcs have different 
mixing factors, while the dynamic aperture is conserved 
for the whole machine [9]. On the basis of the theory of 
“resonant” lattices for synchrotrons with complex 
transition energy developed in [5,10], the application of 
such lattices in various accelerators is outlined. The 
“resonant” lattice also appears to be useful for electron 
machines. In synchrotron-light sources, in particular, the 
minimum momentum-compaction factor and the 
minimum modulation of the dispersion function are both 
simultaneously required to have a small horizontal 
emittance [11,12]. 

MAIN ASPECTS OF «RESONANT» 
LATTICE THEORY 

With a specially correlated modulation of the 
quadrupole gradient )(sK  and orbit curvature )(sρ , and 
a particular choice of betatron oscillation frequencies ν , 
the theory of “resonant” lattices makes it possible to get 
interrelated dispersion variations D(s) and 1/ρ(s) along the 
equilibrium orbit and a negative momentum compaction 
factor (MCF) 
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The general principles of construction of “resonant” 
lattices detailed in [5,10] are based on the solution of the 
equation for the dispersion )(ϑD  in the biperiodic 
structure with the cell periodicity and superperiodicity  
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In the optics with the horizontal tune ν  and the 

superperiodical curvature modulation 
RBei /1~)(/1 +ωϑϑρ , the dispersion solution is 
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written as the sum 
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where )/()(~ 22 ωνϑ ωϑ −= iBeD  and ωϑieRBr =~  are the 
functions oscillating about the averages.  
In an ordinary regular FODO lattice without the 
superperiodic modulation, the oscillating component 
gives 0)(~)(~ =⋅ ϑϑ rD , and the minimum value of MCF 
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D  is limited by the horizontal  tune ν .  

In the “resonant” lattice, the oscillating components 
contribute the term )(2/)(~)(~ 222 ωνϑϑ −=⋅ BrD , which 
in the case ων ≤  can result in a negative MCF. The same 
can be shown for the gradient modulation )()( ϑεϑ kK + . 
Here, we omit the long intermediate computations and 
quote the final formula for the case when the functions of 
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where kg  and kr  are fundamental harmonics  producing 
the maximum effect on MCF.  
Indeed, if both the gradient function and the orbit 
curvature function are modulated with identical 
frequency, the second term in (4) may make an 
appreciable negative contribution to MCF provided that 
the value νω /1−  is small and ων ≤ .  
In addition, from (4), there follows an obvious condition 
of antiphase modulation of the gradient and curvature 
function 0<kk rg , which allows correlated variation of 
the momentum compaction factor with the aid of these 
functions.  

«RESONANT» LATTICE WITHOUT 
trγ CROSSING   

   The most important application of the “resonant” lattice 
is the magneto-optic structure without trγ crossing. Based 
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on the above reasoning, the “resonant” lattice method 
with simultaneous orbit curvature and quadrupole 
gradient modulation with an approximately identical 
contribution of both modulations to the final value of the 
momentum compaction factor is most effective. From (4) 
it is easy to derive the following equation for arbitrary 
fundamental harmonics kg  and kr  giving 2/1 να −≈  
and νγ itr ≈   
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Usually the machine lattice consists of arcs and straight 
sections. For the dispersion in straight sections to be zero, 
the arc consisting of Sarc superperiods should have a phase 
advance of radial oscillations that is a multiple of 2π, i.e. 
νarc should be an integer. This means that the phase 
advance in one superperiod should be 2πνarc/Sarc. On the 
other hand, for MCF to be controlled, it is reasonable to 
take the minimum possible difference 1−=− arcarc Sν . 
Thus, many ratios exist between Sarc and νarc: (4:3), (6:5),  
(8:7), (10:9), … It is obvious that in all ratios, the number 
of superperiods Sarc is taken to be even, while the betatron 
oscillation frequency takes on odd values. In this case, the 
phase advance of the radial oscillations between the cells 
located in different superperiods and separated by Sarc/2 
superperiods is   
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which corresponds to the condition of first-approximation 
compensation for the nonlinear effects of sextupoles 
located in these cells. This remarkable property also 
applies to higher multipoles in any element (see Fig. 1). 
 

First quarter Second quarter

1.5 x (2  )π

1.5 x (2  )π

 
Figure 1: Half of arc with (Sarc:νarc)=8:6. 

«RESONANT» LATTICE FOR 
STOCHASTIC COOLING 

 
    Another application of the “resonant” lattice is as an 
advanced lattice for stochastic cooling. It is known that to 
intensify the stochastic cooling process, the mixing factor 
between the pick-up and kicker should ideally be as large 
as possible. On the other hand, in the case of mixing 
between the kicker and pick-up, the mixing factor should 
be smaller. It can be seen that the “resonant” lattice has a 

remarkable feature: the gradient and the curvature 
modulation amplify each other when they have opposite 
signs, while they can compensate for each other when 
they have the same signs (see formula 4): 
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Thus, in such a lattice, we can make two arcs with 
different slip factors: 22 /1/1 γνη −=pk ; 

22 /1/1 γνη −−=pk  . In case νγ ≈ , one of the arcs is 

isochronous when the slip factor is 0≈pkη  and the other 

slip factor is 2/2 νη −≈kp .  As an example, we will 

consider the SC option for the HESR lattice [9] with 
different slip factors. Both arcs have four-fold symmetry 
with superperiodicity S =4. The phase advance per arc is 

0.3, =yxν  in both planes. Each superperiod consists of 
three FODO cells with 4 or 6 bending magnets and 3 
families of quadrupoles (fig. 2). 

 
Figure 2: The advanced HESR lattice with two different 
arcs. 
 
The different momentum compaction factors are reached 
mainly due to the dispersion function change, and the β -
function changes insignificantly. Two families of 
sextupoles are used for the chromaticity correction, and 
their nonlinear influence is self-compensated inside each 
arc. Due to this fundamental advantage despite two 
different arcs, the dynamic aperture does not suffer in 
comparison with the option of two identical arcs. 

«RESONANT» LATTICE FOR 
SYNCHROTRON LIGHT SOURCES 

    The third application of the “resonant” lattice is the 
synchrotron light source. Since the horizontal emittance 
depends upon the horizontal dispersion function xη , as 

dipolex H∝ε , where 22 2 xxxxxxxH ηβηηαηγ ′+′+= , 

the lattice with small electron emittances therefore 
requires the smaller dispersion function and, as a 
consequence, the stronger sextupoles are needed in order 
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to correct the chromaticity. At the same time, it is well 
known that the sextupoles dramatically decrease the 
dynamic aperture due to their nonlinear action. In this 
case, we can use the “resonant” lattice where the 
sextupolar terms are aimed to be smaller, and each pair of 
sextupoles have the same effect as one octupole. The 
nonlinear tune then plays the role of a stabilizing factor. 
Such a lattice has to be classified as a special lattice [11], 
since the sextupolar term is effectively suppressed, but the 
nonlinearity remains under control and strong. This 
method together with the smallest emittance results in a 
large dynamic aperture. For comparison, the dynamic 
aperture of a modified circular Chasman-Green lattice 
with the same number of sextupole families is smaller by 
a factor of four.  
     Furthermore, there is currently much interest in 
magnetic lattices, which can be operated over a range of 
momentum compaction factors. This provides several 
advantages and the possibility of working without 
sextupoles. 

 
Figure 3: The arc lattice with tuneable momentum 
compaction factor. 
 
Figure 3 shows the arc with a tuneable momentum 
compaction factor. In this lattice, one cell is formed by 
two adjoining cells, and each second focusing quadrupole 
is replaced by a short combined function bend magnet 
with positive gradient BG(G>0). As a result, the arc 
consists of four cells and each half cell has a structure: 
trim QF+short BG(G>0)+long BG(G<0)+QF. The trim 
quadrupole is used for fine tuning. The dispersion 
function is equal to zero at the ends of the arc. This is 
automatically caused by an integer tune number for the 
arc. The matching sections are not needed. Due to the low 
beta function and zero dispersion function in the middle 
of each long bending magnet, the electron beam emittance 
has a rather low value [12].  

CONCLUSION 
We have developed a multi-application “resonant” lattice 
with the following distinguishing features: 

• ability to achieve the negative momentum 
compaction factor using resonantly correlated 
curvature and gradient modulations; 

• gamma transition variation in a wide region from 
xt νγ ≈  to xt iνγ ≈  with quadrupole strength 

variation only; 
• dispersion-free straight section; 
• independent optical parameters of arcs and straight 

sections; 

• two families of focusing and one of defocusing 
quadrupoles; 

• separated adjustment of gamma transition, horizontal 
and vertical tunes; 

• convenient chromaticity correction method using 
sextupoles; 

• first-order self-compensating scheme of multipoles 
and a large dynamic aperture. 
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