
_________________ 
* Supported in part by USDOE Contract. DE-AC05-84-ER-40150 and by 
FRA DOE contract number DE-AC02-07CH11359) 
mike@muonsinc.com

PHASE AND FREQUENCY LOCKED MAGNETRONS  
FOR SRF SOURCES* 

M. Neubauer, R. P. Johnson, Muons, Inc. 
M. Popovic, A. Moretti. FNAL, Batavia, IL U.S.A.

Abstract 
Magnetrons are low-cost highly-efficient microwave 

sources, but they have several limitations, primarily 
centered about the phase and frequency stability of their 
output.  When the stability requirements are low, such as 
for medical accelerators or kitchen ovens, magnetrons are 
the very efficient power source of choice.  But for high 
energy accelerators, because of the need for frequency 
and phase stability---proton accelerators need 1-2 degrees 
source phase stability, and electron accelerators need .1-.2 
degrees of phase stability---they have rarely been used.  
We describe a novel variable frequency cavity technique 
which will be utilized to phase and frequency lock 
magnetrons. 

INTRODUCTION 
In general, there are three different methods for 

stabilizing the magnetron frequency and phase.  The first 
employs a method for coupling a more stable output 
circuit to the magnetron pi-mode resonator [1,2].  The 
second is by injecting a strong stable signal into the 
magnetron to force phase locking [5,6,7].  And the third is 
to create a feedback loop and adjust a controlling variable 
in the magnetron such as anode voltage or filament 
voltage or an active device in the output waveguide [4]. 

There are performance tradeoffs for all these 
techniques.  In the case of a more stable resonator coupled 
to the magnetron, mechanical tuning is still required.  For 
injection locking, large amounts of power are required: 
for example an 825 W 2.45 GHz magnetron required 
58 W and a 2 MW 425 MHz magnetron required 250 kW 
for injecton phase locking [5].  These large amounts of 
power make the injection magnetron effectively a low 
gain amplilfier of around 10 db. And efficiency is the 
tradeoff when changing the reactance of output 
waveguides.  

Feedback schemes tend to have the greatest possibility, 
making the problem a low level RF design issue as long 
as the operating variable of the magnetron has a sufficient 
transfer function to affect tube performance [8].  To date 
those variables have been the anode and filament 
voltages. 

THE CONCEPT 
We propose a design where the variable is the pi-mode 

resonant structure locked into a feedback loop using 
ferrites in each cell.  The permeability of the ferrite is 
adjusted by an external solenoid whose current is adjusted 
by a feedback circuit.  The output of the magnetron is 

sampled by a coupler in the output waveguide, and 
compared to a local oscillator signal. The difference in 
phase and frequency is transformed into the current 
supplied to either all the solenoid-ferrite pairs or to 
individually selected solenoid-ferrite pairs to change their 
permeability.  The change in permeability changes the 
frequency and phase of the pi-mode resonator to maintain 
stable operation and efficiency. 

In addition, since the pi-mode structure frequency is 
variable, it is possible to construct a single magnetron that 
will work over a very broad frequency range. 

Figure 1: Cutaway of magnetron with ferrites in each 
cell of the pi-mode structure. 

Figure 2: The pi-mode anode structure with ferrites, 
and solenoids 
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FEEDBACK CIRCUIT 

 

Figure 7: Block Diagram of fundamental modules of the 
feedback system for stabilizing the phase and frequency 
of the magnetron output. 

The block diagram for a feedback circuit is shown in 
figure 7. The output of the magnetron and the reflected 
signal from the load are fed to a phase and frequency 
comparator along with a reference signal.  The algorithms 
in the comparator transform the differences between these 
signals into current controlled power supplies for the 
ferrites.   

It is not clear how much phase control the reactance of 
the ferrites will produce. If Δμ is not sufficient then 
injection locking will be required.  If the reference signal 
for injection locking is 30 db down, then we have made 
significant improvement with a magnetron amplifier that 
has the gain of an IOT.  If we can get to 60 db down, then 
we have a magnetron amplifier with the gain of a 
klystron. 

CONCLUSIONS AND FURTHER STUDY 
The fundamental components of a system for 

stabilizing the phase and frequency of a magnetron have 
been presented, which include the frequency variable pi-
mode anode circuit loaded with ferrites, the mechanism 
for changing the permeability of ferrites, and the feedback 
circuit required to control the system.   

The optimum operating point for a ferrite loaded pi-
mode structure needs to be further studied to find the 
optimum size and value of ferrite materials that will create 
small changes in frequency and phase.   

The data presented show that a single ferrite loaded pi-
mode structure could operate over a wide range of 
frequencies by simply adjusting the flux threading the 
ferrites.  This innovation could be significant in 
applications from phased array radars to stabilized SRF 
sources. 

What has not been studied is the effect of the lower Q 
of the pi-mode circuit.  Since magnetrons operate in the 
large signal regime, lower Qs are not a significant 
problem as long as they are well matched in the coupling 

to the output RF coax.  Heat generation from losses in the 
ferrites may be a problem, however, the need to remove 
the heat for frequency stabilization is no longer a 
requirement, since the feedback system will maintain the 
frequency of operation.  The permeability of the ferrite is 
a strong function of temperature, and that also must be 
included in the feedback algorithm. 

The interaction between the bias flux threading the 
ferrite and the electron trajectories must be considered.  
Recent advances in increasing the efficiency of 
magnetrons shows the advantage of pole pieces 
concentrating the focusing field close to the interaction 
region between the cathode and the vanes.  This may be 
required to minimize effects of stray bias fields.  

Competing modes in pi-mode structures and the 
frequency separation of those modes is critical to stable 
operation.  In the studies already performed there seems 
to be ample flexibility in finding the optimum operating 
conditions as the effective radial length of the cells are 
changed relative to one another by changing the 
permeability of selected ferrites.  The timing of the 
feedback circuit and the sources of phase and frequency 
excursion within the magnetron also need to be evaluated.   

In conclusion, the use of ferrites threaded by controlled 
levels of magnetic flux orthogonal to RF magnetic fields 
inside of pi-mode structures offer new and significantly 
improved functionality for low Q devices such as a 
magnetrons. 
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