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Abstract 
An analytical model is being developed in an attempt to 
quantify the variances of lattice displacement and beam 
orbit jitter by adopting the model to NSLS II conditions. 
Relations governing stochastic processes as well as 
numerical analysis of the interaction of the accelerator 
ring structure with the randomized substrate and ground 
motion are used to construct appropriate transfer functions 
linking the field with the accelerator lattice distortions. 

INTRODUCTION  
The extremely tight photon beam parameters of the NSLS 
II impose challenging requirements onto the electron 
beam and its orbit stability in the 6-dimensional phase 
space. To achieve the demanding photon beam 
parameters, the electron beam orbit stability at the photon 
beam source locations must remain below a few hundred 
nanometers for a wide frequency band. The orbit stability 
at the photon extraction locations is directly coupled to 
the movement of the magnetic elements in the lattice itself 
coupled to the ring structure. While the vibration 
environment exciting the ring structure that in turn excites 
the lattice and eventually the electron beam is a 
combination of deterministic and stochastic or random 
noise, it is the random, uncorrelated part that may induce 
the largest orbit instabilities due to the inability for feed-
back correction. Central to the orbit stability is the 
estimation of the variance of the position of magnetic 
elements in the lattice expressed in the form of a spatial 
cross power spectrum. Subsequently, the variance in the 
magnetic element position will translate into variance of 
the beam “jitter” and photon beam instability. 
 
Several studies have addressed the beam orbit distortion 
resulting from lattice magnet movement due to ground 
vibration [1,2] for linear and circular machines. In all the 
studies, however, the quantification or the variance of the 
beam orbit distortion based on site-specific parameters 
and randomization has been challenging. The potential of 
numerically simulating the dynamic response of the 
overall accelerator structure and of the lattice opens the 
possibility of quantifying the processes involved. 
 
In this study, a model combining analytical and numerical 
processes governing the interaction of stochastic ground 
motion with the light source ring is formulated in an 
attempt to quantify the variances of lattice displacement 
and beam orbit jitter for the specific conditions of the 
                                                 
  * Work supported by the U.S. Department of Energy under Contract No.
DE-AC02-98CH10886. 
#  simos@bnl.gov 

NSLS II. Specifically, the dynamic interaction of the 
NSLS II ring structure supporting the lattice with the 
stationary ground vibration field is addressed using a 
comprehensive 3-dimensional analytic model of wave 
propagation and wave-structure interaction. Cross transfer 
functions linking ground vibration with the ring and 
lattice are deduced from the numerical analysis leading to 
the formation of a multi-degree of freedom cross-spectral 
density of the lattice. The variance of the lattice spectral 
response at any of its DOF can subsequently be estimated 
as a function of the ground motion stochastic parameters. 

OVERALL RANDOM MODEL 
Ground motion at a gives site consists of a deterministic 
and stochastic (random) part. Multiple measurements at 
the site (offset in space and time) can help delineate the 
two contributions. It is assumed that the ground motion of 
interest is described by a stationary process which can be 
represented by power spectra that reflect the stochastic 
nature. Therefore, any “measurement” recorded at the site 
represents a “realization” of the stochastic process. 
Consider the green-field ground vibration as a cross 
correlated power spectrum  
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Spatial variability over the accelerator site should be 
considered to be the result of fluctuations around a mean 
value. Such fluctuations can be randomized and 
incorporated into the process of transferring the stochastic 
motion of Eqn. 1 to the accelerator structure. Consider the 
fluctuating component φ(x,y) of a property describing the 
site (i.e. wave propagation velocity) and exhibiting spatial 
variability over the domain of interest (accelerator 
interaction with the site vibration) to have zero mean 
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and auto-correlation function 

( ) ( ) ( )[ ]ξϕϕξϕϕ += xxER  (3) 

x is the position vector and ξ is the separation vector 
between two locations. Equation 4 represents an assumed 
correlation of the random property between two locations 
separated by a vector ξ while δ defines the distance of 
strong correlation. Geophysical site studies will provide 
information that will allow for the best estimate of δ. 
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The correlation between xi and xj is established from the 
covariance matrix and the randomized field φ of size N. 
From Eqn. 4 a random vector λ (also of size N) is 
generated.  
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Where L is the lower triangular matrix resulting from the 
Cholesky decomposition of the covariance matrix Cφφ 
satisfying the following relationship, 

ϕϕCLLT =  (8) 

Thus, starting from a vector consisting of N independent 
random realizations of the parameter fluctuation and using 
a decomposition technique of the covariance matrix, a 
vector that contains both the randomness and the 
correlation between locations is formed. This vector of 
values is added to the expected value of the parameter for 
the zone leading to a distribution of values that are 
correlated. Using a Monte Carlo approach, M random 
vectors φ are generated leading (through the covariance 
matrix and its decomposition) to M profiles expressed in 
the form of λ vectors. The computational cost of 
generating random correlated fields is minimized because 
decomposition of the covariance matrix takes place once.  

In addition to the stochastic ground motion that interacts 
with the ring supporting the lattice, random, uncorrelated 
noise it is assumed to exist on the ring floor supporting 
the lattice elements. This noise can be assumed to exhibit 
correlation over the floor or to be described by a white 
spectrum and be spatially and temporarily uncorrelated. 

LATTICE SPECTRAL RESPONSE 
The transfer of the random free-field motion expressed in 
terms of a cross-spectral function (Eqn. 1), through a site 
that has been randomized to reflect spatial variability, to 
the accelerator ring is achieved with transfer functions 
which capture the dynamic interaction of the ring 
structure with the spatially varying ground vibration. 
Fig.1 depicts time snap-shots of the interaction of surface 
waves (Rayleigh mode) propagating on the site and 
interacting with the ring structure. By relying on a large-
scale numerical model the relation between the free-field 
motion which represent a “realization” of a random field 
or in other words it is a member of a family represented 
by the same power spectra the transfer functions [HFr(ω)] 
between the free field and N locations on the ring (i.e. 
lattice magnetic element supports) can be established. In 
the complete case of a [3x3] cross-power spectrum in the 
free-field a [NxN] transfer matrix can be deduced that 
includes all the cross-terms. 

( ) [ ] )]([)()]([][ *' ωωωω FrFFFrrr HSHS =  (9) 

Where Srr is the [NxN[ cross-spectral density of the N 
locations on the ring (i.e. lattice supports), SFF is the free-
field power spectrum and [H’*] is the transpose of the 
conjugate transfer function from the free-field to the ring 
locations. With the cross-spectrum at the support of each 
lattice magnetic element the power spectrum at the 
magnet location can be deduced from a similar relation 
defined by Eqn. 9 while considering a linear transfer 
function Hrm(ω) between the ring floor and the magnet,  
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Figure 1: Simulated interaction of the NSLS II ring 
structure with ground motion (Rayleigh wave mode). 

 
Figure 2: Measured floor vibration transfer to lattice.   

The floor-to-magnet transfer function can either be 
analytically established for each independent lattice 
magnetic element or can be measured. Fig. 2 reflects 
measured transfer functions at the BNL NSLS. Therefore 
the variance associated with the position of the lattice 
magnetic elements, provided that there is no added 
random noise, can be deduced from 
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Assume, however, that over the lattice support there exist 
additional random noise Nrr that is uncorrelated with the 
ground motion but could exhibit spatial and temporary 
correlation over the support floor. The cross-spectral 
matrix now takes the form 
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For an existing ring supporting the accelerator lattice the 
total power spectrum containing the random noise can be 
established from measurements. Based on the assumption 
that the ground motion and the noise disturbance are 
uncorrelated, the spectral matrix of the noise can be 
deduced based on the relation 
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The ‘noise’ spectral matrix SNN may assume different 
forms. It can be described by a white noise spectrum 

TU5RFP015 Proceedings of PAC09, Vancouver, BC, Canada

1124

Light Sources and FELs

A05 - Synchrotron Radiation Facilities



causing movement of the N lattice supports to be 
uncorrelated. In the event that the only uncorrelated 
movement on the lattice N supports results from this noise 
disturbance, then the magnetic element uncorrelated 
movement can be deduced. 

BEAM JITTER EVALUATION 
To quantify the effect that stochastic motion has on the 
beam jitter, the analytical procedure described in the 
previous sections and numerical or simulation models of 
the interaction need to be employed. In particular, the 
understanding of how the realistic, multi-DOF structure, 
responds to the random motion can be deduced from a 
numerical model designed to mimic the spatially varying 
site conditions and the structure. Considerations of 
deterministic accelerator ring structure and lattice are 
considered valid and thus enable simplification of the 
problem. The power cross-spectrum representing the 
family of ground motion realizations can be deduced from 
measurements or defined according to formulae that have 
been deduced from studies [2] and have estimated the 
delineation of the correlated and uncorrelated parts of the 
power spectra. Measured coherence or correlation 
properties of a site ground motion (Fig. 3) will lead to site 
specific parameters relevant to the spectra cross terms. 
 

  
Figure 3: Coherence and correlation of ground motion 
recorded at the NSLS II site. 
 
Based on the simulation of waves that are part of the 
ensemble represented by the power spectra and their 
interaction with the structure, transfer functions linking 
the random free-field with the accelerator lattice support 
are constructed. These transfer functions reflect the 
response based on the wave propagation mode that is 
considered (i.e. surface or body waves). With the cross-
spectral matrix between the free-field and the ring floor 
HFr(ω) either with added floor noise Nrr or not the cross-
power spectra of the N lattice support locations is 
deduced. The cross-spectrum of the movement of the 
lattice elements about the reference position as a result of 
the floor movement is deduced from Eqns. 10 and 12. The 
dynamic response of the ring structure, however, plays a 
significant role in determining the cross-correlation terms. 
Correlated and uncorrelated ground motion will excite the 
structural modes making the floor movement at the N 
locations strongly correlated at the modal frequencies. 
Figure 4 shows some of the structural modes. Modes 
within the frequency band of interest, therefore, need to 
be identified and their influence on the cross-spectra 
terms are accounted for.   

  

 
Figure 4: Mode ensemble of ring resting on the site. 

 
The cross-spectral matrix over the N magnetic elements 
of the lattice which has accounted for (a) the stochastic 
nature of the site ground motion, (b) the spatial variability 
at the site, and (c) added, uncorrelated noise on the floor 
can be used to compute the variance of the beam jitter. 
Studies [1] have established relations that link movement 
in the magnetic element with the beam kick at the magnet 
location. The beam orbit distortion will be an integrated 
effect of all magnet motions. A key parameter in 
assessing the accumulated effect is the correlation length 
pertinent to the floor spectrum since correlation lengths 
greater than the betatron wavelength will have almost no 
effect. Assuming that the response function Φij(ω) 
describing the beam jitter at a magnetic element as a 
function of every magnet of the lattice  (that accounts for 
the correlation length discussed above) is known, as it is 
the case for several machines, then the variance of the 
beam jitter can be deduced from 

     ωωωσ
π

π

dSmijjitter )]()][([2 ∫
−

Φ=                               (14) 

SUMMARY 
The framework of a comprehensive process for estimating 
beam orbit distortion variances due to ground motion, 
spatial site variability while combined with uncorrelated 
random noise on the ring has been formulated. Large-
scale simulations of the interaction of the ring/lattice 
structure with the randomized fields are implemented to 
construct cross-spectral matrices. These are augmented 
with site measurements revealing correlation and spectral 
properties.  
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