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Abstract 

Under certain assumptions and simplifications, we 
studied a few physics processes of Coherent Electron 
Cooling using analytical approach. In the modulation 
process, the effect due to merging the ion beam with the 
electron beam is studied under single kick approximation. 
In the FEL amplifier, we studied the amplification of the 
electron density modulation using 1D analytical approach. 
Both the electron charge density and the phase space 
density are derived in the frequency domain. The 
solutions are then transformed into the space domain 
through Fast Fourier Transformation (FFT).  

 

I TRODUCTIO  
 
Possibility of enhancing electron cooling using various 

collective instabilities - called either Coherent Electron 
Cooling or Stochastic Electron Cooling - was discussed 
by Ya. S. Derbenev since 1980 [1]. First specific 
mechanism of Coherent Electron Cooling, recently 
developed by V. N. Litvinenko and Ya. S. Derbenev [2, 
3], is based on high gain free electron laser (FEL) . This 
method promises to be an effective method for 
significantly increases in the luminosity of high energy 
hadron colliders. Both analytical approach and macro 
particle simulation approach were developed to study the 
detailed modulation process [4, 5]. For infinite anisotropic 
plasma with κ  velocity distribution for 2=κ , a closed 
form solution was derived for electron density modulation 
due to an ion moving with constant velocity. However, the 
effect due to merging the ion beam with electron beam 
involves changing of ion velocity. The physical process in 
FEL has been relatively well studied in simulation and 
theoretical approach. As most theoretical studies were 
focused on the emitted radiation, evolutions of the 
electron density and the phase space density in the FEL 
have to be derived.  
   In this paper, we present some analytical studies of 
these issues. By treating the merger as a thin kicker, we 
generalized the closed form solution in [4] to include the 
merging process. For the FEL amplification, we adopted 
the frame work of 1D theory[6]. Using the electron 
density modulation derived in [4] as initial condition, both 
the electron density amplification and the phase space 
density evolution inside FEL are derived in the frequency 
domain with space charge and energy spread effects being 
taken into account. The solutions in the time domain are 
obtained numerically by FFT.  

 

 
 

Figure 1: Schematic drawing of the merging process 
through a thin kicker. The red solid spot represents a 
moving ion and the grey ellipse around it represents the 
modulated electron cloud. The kick takes place in 0=t  
as the ion crossing the merger which is represented by the 
dark grey squares in the middle of the graph. The ion 

meets the electrons at 0Tt −=  and separates from them 

at 1Tt = . 

 

MERGI G EFFECTS I  ELECTRO  
DE SITY MODULATIO  

 
As the electron beam approaching the circulating ion 

beam with an angle, its velocity has to be changed in 
order to moving with the same velocity as the ion beam. 
The simplest model to describe the merging process is to 
assume the velocity change of the electron beam happens 
instantaneously, i.e. caused by a thin kicker. As shown in 
Figure 1, if we stay in the reference frame of the 
electrons, the process can be described by the shielding 
process of electrons to an ion which abruptly changes its 

velocity from iv
r

 to fv
r

at a given time 0=t .    

For the system described above, the charge density of 
the moving ion can be expressed as 
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, where xβ , yβ  and zβ are parameters to describe the 3D 

electron temperatures. Following similar derivation in [4],  
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                     (a)                                           (b) 

    
                     (c)                                           (d) 

Figure 2: Example of electron density modulation in 
presence of an instantaneous kick at 0=t  as calculated 
from eq. (3). The abscissa is the longitudinal position and 
the coordinate is the transverse position, both in units of 
Debye radius. In this example, ( )2,0,2=iv

r
,  ( )4,0,0=fv
r

 

and πψ 20 = *. (a) Snapshot at πψ 05.01 = ; (b) Snapshot 

at πψ 1.01 = ; (c) Snapshot at πψ 2.01 = ; (d) Snapshot at 

πψ 5.01 = . 

 
we obtained the following result for the electron density 
evolution, 
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, where Dxr , Dyr and Dzr are Debye radius of the electron 

plasma, pω is the plasma frequency of the electrons 

1,01,0 Tpωψ = , Dxrxx /= , xixix vv β/=  and  
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*
 In reality, an ion typically spends very short time while merging the 

electron beam (i.e. ψ0 <<1) and its transverse velocity component is 

very large (i.e. ( ) 1 ,2,0, >>= ⊥⊥ vvvi

r
). There, the parameters we 

used in this example correspond to the worst case scenario. 

        

          
Figure 3: Electron density amplification in 1D FEL. The 
abscissa is time in units of nanosecond and the coordinate 
is the electron charge density with units 1)( −

DzDyDxi rrreZ . 

The top graph is the electron density modulation at 1 gain 
length and the bottom graph is the electron density 
modulation at 13 gain length. The electron beam going 
leftwards. 

 

As shown in Figure 2, direct numerical integration in 
equation (3) is straightforward and calculation shows that 
the modulation before merging becomes negligible after 

4/1 of plasma oscillations. 

CHARGE DE SITY A D PHASE SPACE 
I  1D FEL 

 
     We adopted the formalism in [6] to study the 
amplification process in an 1D FEL. If we assume the 
longitudinal energy distribution of the electrons is 
Lorentzian and the energy spread is small,  the electron 
current density in the frequency domain is given by [7] 

         ( ) ( ) ( ) ( ) ( )CjeCCACzj
i

zC
ii

i ˆ,0
~ˆˆˆ,ˆ~

1

3

1

ˆˆ

1 ∑
=

= λλ          (4) 

, where iλ are three eigenvalues solved from equation 
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q̂ is parameter to describe the electron energy spread,  

pΛ̂ is the space charge parameter, Ĉ  is the reduced 

detune which is defined as 
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Figure 4: Phase space density modulation in FEL. The 
abscissa is time for 4 radiation period and the coordinate 
is the energy deviation from q̂2−  to q̂2 . The graph 

shows the phase space density at 7 gain lengths. The red 
areas are with higher electron densities and blue areas 
with lower electron densities. The electron beam going 
leftwards.  

    

where wk is the undulator wave number, gainl is the FEL 

gain length, ẑ  is the longitudinal location along the FEL 

in units of gain length and iA  are coefficients determined 

by initial modulation. The time domain solution is thus 
given by Fourier transformation of equation (4).  
      Apart from the density modulation, the energy 
modulation of the electrons in FEL is also important for 
the effectiveness of the kicker section. For example, 
preliminary simulation shows that the modulation tends to 
grow at the beginning of the kicker which is related to the 
energy modulation in FEL. For Lorentzian energy 
distribution, the phase space density in the frequency 
domain is 
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where P̂ is the energy deviation from the average energy 
of the electron beam, 1−=Γ gainl is the gain parameter and 

sθ is the electron rotation angle in FEL [6].  The time 

domain solution is obtained by Fourier transformation of 

equation (5) with respect to Ĉ , i.e. 
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where Γ= /ˆ
ww kk .  As shown in Figure 4, there are more 

particles losing energy than gaining energy and the net 
energy lost by the electrons transfers to the radiation field. 
The whole pattern tilts to the left with a small angle, 
which is due to the dispersion effects. In the kicker 
section, the dense area (red) with higer energy and lower 
energy will approach each other due to the dispersion 
effect and electron density modulation is thus increased at 
the beginning of the kicker.  
 

SUMMARY 
 
The analytical solution of electron modulation is 

obtained for the simplified single kick merger. The result 

shows that the effects before the kick dissipated in 4/1 of 
plasma oscillation. The electron density and phase space 
density within FEL is derived analytically in the 
frequency domain. Time domain solutions are obtained by 
FFT. The results can be used to benchmark simulation 
codes and serves as a tool for fast estimation. Further 
studies involve the analytical study of the kicker section, 
the diffraction effects in the FEL and the velocity 
modulation at the modulator.  
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