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Abstract

This paper develops a formulary that summarizes the
growth rates (e-folding lengths) for a wide range of col-
lective beam-plasma instabilities for an intense ion beam
propagating through a background plasma that provides
complete charge and current neutralization. The instabil-
ities considered here include: the electron-ion two-stream
instability; the multispecies electromagnetic Weibel insta-
bility; and several beam-plasma instabilities that include
the effects of an applied solenoidal magnetic field on the
electron dynamics.

INTRODUCTION

There is growing interest in collective instabilities
and beam-plasma interaction processes for an intense
charged particle beam propagating through neutralizing
background plasma, with applications ranging from the
focusing of intense ion charge bunches to a small spot
size, to ion-beam-driven high energy density physics and
heavy ion fusion [1, 2]. Recent theoretical investigations
[3,4,5, 6,7, 8] have included advanced analytical and nu-
merical studies of collective interactions and instabilities,
including: the electron-ion two-stream instability [3, 4, 5]
between the beam ions (j = b) and the plasma electrons
(j = e), and the plasma ions (j = 4) and plasma elec-
trons (j = e); the effects of a velocity tilt on reducing
two-stream instability growth rates [6]; the multispecies
electromagnetic Weibel instability [3, 4, 5]; and the ef-
fects of a solenoidal magnetic field on several beam-plasma
instabilities[7, 8].

In the present paper, a formulary is developed that
summarizes the growth rates (e-folding lengths) for a
wide range of collective beam-plasma instabilities for
an intense ion beam propagating through a background
plasma. The plasma is assumed to provide complete charge
and current neutralization with >, ,  ,nje; = 0 =
> j—b.e.i Nj€iBjc, where nj and e; are the number density
and charge, respectively, of species j, and 8c = V,; is the
average axial velocity of species j in the z-direction. The
analysis generally allows for a uniform solenoidal magnetic
field Be, in the direction of beam propagation. It is as-
sumed that the applied solenoidal field is weak enough that
the applied magnetic field influences only the electron dy-
namics. In this case, an important dimensionless parameter
that determines the stability behavior is defined by [7, 8]
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where wy,e = (4mnge?/m.)/? is the electron plasma fre-
quency, and w.. = eB/mcc is the electron cyclotron fre-
quency. Here, ng is the number density of neutralizing
plasma electrons, m, is the electron mass, n; is the ion
beam number density, and A, and Z,, for s = (i,b), de-
note the beam ion and background ion atomic mass number
and charge state, respectively. For weakly relativistic ions,
we express the parameter « in terms of the accelerating en-
ergy U using the relation
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In the subsequent analysis, we consider the two limiting
cases corresponding to weak magnetic field (o > 1), or
strong magnetic field (o < 1).

WEAK MAGNETIC FIELD (o > 1)

The case of weak magnetic field (o« > 1) corresponds to
the circumstances where the solenoidal magnetic field has
a negligible effect on the electron dynamics. (Of course
this also includes the case where B = 0.)

The characteristic e-folding length L ._ ; of an instability
with maximum temporal growth rate (Imw) maz 1S

Yy

Le-y = (Imw)maz @

where Vj is the group velocity of the perturbation with the
most unstable wavenumber. The group velocity is differ-
ent for different instabilities [3, 4, 5]. For example for
the two-stream instability between the beam ions (j = b)
and the background electrons (j = e), V; ~ (2/3)W,
whereas for the two-stream instability between the back-
ground ions (j = ) and the background electrons (j = e),
V, = (1/3)Ve = (1/3)Zy(my /no) /1 + Zy(n /)] V. On
the other hand, for the multispecies Weibel instability, the
group velocity is, V; = V,. Therefore, for simplicity, we
estimate an upper limit L, on the e-folding length by re-
defining it as

W
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Below we summarize the expressions for L, for various
beam-plasma instabilities [3, 4, 5, 6, 7, 8].

a. Multispecies Weibel instability: For the case of
weak magnetic field with « >> 1, the e-folding length for
the multispecies Weibel instability is given by [3, 4, 5]
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b. Two-stream instability between the beam ions and
the background plasma electrons: For the two-stream in-
stability between the beam ions and the background plasma
electrons [3, 4, 5], we obtain
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¢. Two-stream instability between the background
ions and the background electrons: On the other hand,
for the two-stream instability between the background ions
and the background electrons [3, 4, 5], we obtain
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STRONG MAGNETIC FIELD (a < 1)

For the case of sufficiently strong solenoidal magnetic
field that o« < 1 [7, 8], it follows from Eq. (3 that
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a. Multispecies Weibel instability: In the case where
a <K 1, the e-folding length for the multispecies Weibel
instability is [8]
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b. Lower-hybrid instability: For the lower-hybrid in-
stability [8], we obtain for a < 1
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¢. Modified two-stream instability: For the modified
two-stream instability [8] between the beam ions (s = b),
or the background ions (s = ), and the background elec-
trons we obtain for o < 1
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d. Upper-hybrid instability: For the upper-hybrid in-
stability [8] between the beam ions (s = b), or the back-
ground ions (s = i), and the background electrons, we
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obtain for o < 1
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Table I1
Instability Type Case (b):
B =1kG
(a=10.117)
Multispecies Weibel

instability [Eq. (14)] Lyw = 221.4cm
Lower-hybrid instability [Eq. (16)] | Lrg = 55.6cm

Modified two-stream instability
between the beam ions and
the background

plasma electrons [Eq. (18)] L?\/ITS = 19.3cm

Modified two-stream instability
between the background ions and
the background

plasma electrons [Eq. (19)] Lﬁ\/ITS = 11.8cm

Upper-hybrid instability
between the beam ions and
the background

plasma electrons [Eq. (21)] LYy =4.0em

Upper-hybrid instability
between the background ions and
the background

(B/kG)?
(ng/cm=3)[1 + Z,

1/6
(nb/non} o

ILLUSTRATIVE EXAMPLES

X {1+1011

To illustrate the application of the above formulae, we
consider a weakly relativistic (3, = 0.1) singly ionized
(Zy = 1) Aluminum ion beam (A, = 13) propagat-
ing through a background Argon plasma (Z, = 1 and
A, = 18) with electron density ng = 102cm ™3, with
ratio of the beam density to the background electron den-
sity equal to ny/ng = 1/6, and for two different strengths
of applied solenoidal magnetic field: (a) B = 0.1kG, and
(b) B = 1kG, corresponding to (a) & = 11.7 > 1, and
(b) a = 0.117 < 1, respectively. The e-folding lengths for
the different instabilities for Case (a) are summarized in Ta-
ble I, and the e-folding lengths for Case (b) are summarized
in Table II.

Table I
Instability Type Case (a):
B =0.1kG
(a=11.7)
Multispecies
Weibel
instability [Eq. (7)] Ly = 220.0cm

Two-stream instability
between the beam ions
and the background
plasma electrons [Eq. (9)]
Two-stream instability
between the background ions and
the background electrons [Eq. (11)]

Lb¢ =3.9cm

Lig=24cm
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plasma electrons [Eq. (22)] L%J g = 2.4cm

When using the above expressions for the e-folding
lengths for instabilities involving the background plasma
ions and the background plasma electrons, keep in mind
that the group velocity can be smaller than the beam veloc-
ity, and therefore, the e-folding length can be smaller by
the same factor than the ones quoted in the text.
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