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Figure 2: General scheme of frequency sweep stripping. 
 

 FIRST EXPERIMENT  
The first experiment demonstrated high efficiency 

(about 90%) laser-assisted H- beam conversion into 
protons at SNS, and agreed fairly well with the theoretical 
calculations, given the limited knowledge of the beam 
parameters[1].   The experiment used a 1 GeV H-  beam 
and a 13.7 MW peak power 355nm laser.    

 
This proof of principle experiment was limited by the 

transmission of the laser power into the stripping chamber 
through a vacuum window.  During the experiment, the 
power was restricted to 10.25 MW to avoid breaking the 
vacuum chamber windows (Figure 3). 
 

 

Figure 3: Vacuum window which limited the laser power 
to the H- beam in the experiment described above. 

 NEXT EXPERIMENT  
In the next experiment and in the final design, the laser 

power will be amplified inside the vacuum chamber by a 
Fabry-Perot resonator (also called a cavity) and the 
injected laser power will be a few orders of magnitude 
lower.  The laser power requirement will be reduced from 
the previous experiment by the following factors: 

 

• Matching laser pulse time pattern to the  ion 
beam by using mode-locked laser instead of Q-
switched: ~ x25  

• Using dispersion derivative transport of the H- 
beam  to eliminate the Doppler broadening due 
to the energy spread: ~ x10  

• Recycling the laser pulse in the vacuum 
chamber: ~ x10   

• Vertical size and horizontal angular spread 
reduction: ~ x2-5  

 
By combining all factors, the required average laser 

power can be reduced to between 50 and 120W, which is 
within reach of modern commercial lasers; however, a 
number of technical challenges remain. 
 
 Operation in Vacuum  

Operation of optics in vacuum requires temperature 
stabilization and cooling to avoid distortions in the optical 
figure and drift.  For a resonator Q of about 100,  the 
intracavity power is on the  order of 10 kW.  Mirrors 
coated for the UV typically have losses of order 350-1000 
ppm, leading to an absorbed power of about 10 W. 

 
Jefferson Lab’s Free Electron Laser (FEL) optics group 

has developed great expertise with handling high power 
laser optics in vacuum.  The FEL has generated 15 kW of 
continuous extracted and about 150 kW of intracavity 
laser power to date; and the group has developed back, 
edge, and cryo-cooled optics.   Figure 4 is an example of 
one of the turning mirror cassettes used to transport beam 
from the accelerator vault to the laboratories.  This 
assembly is designed to transport 50 kW of average 
power. 
 

 
Figure 4:  One of the turning mirror cassettes at the JLab 
FEL User Facility.  Mirrors (not shown here) are back-
surfaced cooled and actuated. 
 
 UV Laser Beam 

The SNS group has acquired a high peak power 
50ps/402.5MHz macropulse laser, are working on a ring-
cavity setup with an 80.5 MHz mode-locked Ti sapphire 
laser.  The group has recently demonstrated successful 
recycling of 80.5 MHz/2.5 ps laser pulses in a 402.5 MHz 
optical cavity and is currently addressing cavity 
stabilization. 
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