
LONGEVITY OF ACCELERATOR CONTROL SYSTEMS MIDDLEWARE

K. Žagar, Cosylab, Ljubljana, Slovenia

Abstract
Accelerators are designed to be in operation for several

decades, and frequently even their construction alone
takes a decade or more. Given the rapid rate of
obsolescence of information technologies, it becomes a
challenge how to choose the technologies that would
stand the test of time, or at least make long-term support
manageable. In this article, we focus on middleware: the
glue that keeps inherently heterogeneous control system
platforms able to interoperate with each another. We
argue that whichever middleware technology is used, it is
advisable to abstract it with simple, domain-specific APIs,
whose implementation can change as the evolving
performance requirements push the initial middleware
choice beyond its limits of applicability.

INTRODUCTION
Middleware is infrastructural software that allows

application-specific software components to interconnect.
As middleware significantly simplifies development of
distributed applications, control systems of large
experimental facilities that involve more I/O (input-
output) channels than a single computer can manage
frequently adopt an existing middleware solution. In
terms of the number of I/O channels, particle accelerators
are probably one of the most demanding middleware
applications.

For the purposes of this article, we extend the term
“middleware” somewhat to include higher-layer
frameworks that are already control-system specific.
Thus, we consider frameworks such as EPICS [1],
TANGO [2], TINE [3], OPC [4], LabVIEW [5] and others
as middleware as well.

Middleware has a unique position in the control system
architecture: most other software components interact
directly with middleware. Therefore, once a middleware
choice is made, it is difficult to change. Practically all
software needs to be adapted, or more likely, rewritten –
an effort which is significantly larger than can be made
during a single maintenance shutdown and is more likely
to take years (see for example the experience during the
ESRF accelerator upgrade, [6]).

Contrast this to, say, replacing an obsolete I/O device
with a newer model. This typically requires writing the
device driver, and adapting it to its present interface
through which the rest of the system interacts. If tested
well outside the shutdown period, the site-wide
replacement can be done in a matter of hours, or at most
days – depending on the capability of management tools
that come with the middleware.

Ideally, therefore, middleware would not need to be
changed throughout the lifetime of the facility. Its
longevity (or life expectancy) should thus be sufficiently
long. By the very least, one should get a “life insurance”

on the middleware: at the time of its adoption, take
measures that will allow migration to another middleware
implementation economically feasible.

In this paper, we first briefly explain the middleware
concept, its benefits and pitfalls. Afterwards, we give
some of the reasons why middleware might become
obsolete at all. Then, we present some of the
characteristics of middleware which we believe have the
most impact on its longevity. Finally, we propose how to
define architecture in such a way that change of
middleware remains feasible.

BENEFITS (AND PITFALLS) OF
MIDDLEWARE

In a sense, middleware is a data bus through which
application’s components share the data (see Figure 1).
One of its principal benefits is location transparency,
which hides most of the complexity of building
applications that are distributed across several computers
and require network communication to interact. Without
middleware, application developers would need to resort
to networking primitives such as sockets, and they would
need to implement the data exchange protocol, including
code for serialization of data structures to streams of
bytes.

Figure 1: Middleware – the glue between application’s
software components.

Location transparency implies a step further – not only
is development of distributed system simplified, one can
easily switch from a monolithic, single-process
deployment to a distributed one, without changing the
application code.

But this benefit does not come without a significant
pitfall which is frequently neglected: in a distributed
system, a much wider spectrum of failures can occur.
What is a simple method invocation in a single-process
application can now fail due to reasons such as non-
existence of the invocation target, network failure,
invocation target process’ crash, etc. Thus a good
middleware will also provide facilities to handling faults

Proceedings of PAC09, Vancouver, BC, Canada WE1RAC04

Controls and Operations

T04 - Control Systems 1795

in a manner that does not require failure management
considerations to “pollute” most of the application’s code.

Another very significant benefit of middleware is that it
allows interoperability of application’s components not
only across the network, but also among different
hardware architectures, operating systems, and even
computer languages.

REASONS FOR MIDDLEWARE
OBSOLESCENCE

The reasons why middleware is prone to facing
obsolescence as time passes is the same as with the rest of
software:

• Requirements change, and the middleware no
longer fulfils them. For example, an upgrade at the
facility might require streaming experimental data at
high data rates to dozens of consumers, but
middleware does not allow for efficient multicasting.

• Hardware and/or operating system evolve, and
middleware is no longer compatible. For example,
existing hardware becomes obsolete and stock items
are no longer available, therefore it must be updated.
However, the update requires operating system to be
upgraded as well, because the old operating system
does not have all required drivers. But, the
middleware does not work well with the new
operating system...

• Middleware offering significantly higher level of
development efficiency becomes available, and
developers/maintainers opt for a change.

MIDDLEWARE LONGEVITY
CHARACTERISTICS

Open Source
Because source code of open sourced middleware is

readily available, the staff at experimental facilities can
make slight modifications to account for the changing
requirements and hardware/operating system
environment. Also, with open source software it is easier
to troubleshoot difficulties, as white-box inspection
techniques can be applied. Thus, ceteris paribus, open
source software is more likely to be long-lived than an
equivalent closed source package.

We note that not all software that is open source is also
available for the general public to modify. Such example
is the Sun’s Java library, the sources of which are readily
available with the Java Development Kit distribution, but
is not allowed to be modified.

Proprietary
Proprietary software can be purchased off-the-shelf.

Due to economy of scale, the price of licenses and first
few years of support are relatively low. Also, the solution
is available practically immediately, as it is already
developed. Furthermore, in cases where the software has
a large install base, the software is likely to be reliable as
it has been thoroughly tested by many users.

 However, there are several risks that need to be
considered:

• It is unlikely that the off-the-shelf software will
satisfy all the present and future requirements of the
experimental facility.

• There is possibility of a vendor lock-in: as the vendor
owns a monopoly of the particular software, it might
abuse its position and raise the price of
support/licenses in the future.

• The vendor might not be around throughout the life-
time of the experimental facility, or it might decide
to cease supporting the software. This risk can be
effectively mitigated with an escrow agreement
which allows the user to obtain the source code, shall
the vendor be unable to continue to support it.

• Only the vendor can modify the software to fit the
needs of experimental facility, at their own pace.
This risk can be mitigated with a support agreement,
however support agreements spanning several
decades are a risky proposition for the vendor, which
might result in a high price for the user.

Given the mentioned benefits and risks, there are
subsystems of experimental facilities that benefit from
using proprietary software, for example:

• PLC-based safety and machine protection systems.
E.g., at CERN, such systems are integrated with the
UNICOS framework [7].

• National Instruments’ LabVIEW, which can be used
to implement control systems of entire experiments.
E.g., the PHELIX experiment at GSI [8].

Interoperable Open Standard
Some middleware is standardized through an open

standardization process. The standard typically prescribes
the API as well as the wire protocol.

Because of standardized API, middleware
implementation that conforms to the standard can be
replaced with another implementation, without having to
make any modification to the application code.

The standardized wire protocol allows applications that
use different middleware implementations to
communicate with one another (interoperability).

Some control systems infrastructures benefit from the
open standard significantly, in particular those based on
Common Object Request Broker Architecture (CORBA),
which is standardized by the Object Management Group
(OMG). An example of such a control system is the
ALMA Common Software (ACS) [9], where CORBA
implementations OmniORB, JacORB and TAO enable
interoperability of Python, Java and C++ processes,
respectively. Also, ACS was able to change one
implementation for another during its lifetime, because
support for the initial CORBA implementation ceased to
exist.

Availability of Support
Long term support is crucial for longevity, for changing

requirements and environment may eventually require
making modifications to the middleware.

WE1RAC04 Proceedings of PAC09, Vancouver, BC, Canada

1796

Controls and Operations

T04 - Control Systems

For open source packages, support is frequently offered
by the community behind the package. Such is the
example with EPICS and ACS, where support is offered
through publicly available mailing lists (EPICS tech-talk
and ACS discuss, respectively). However, as members of
the community are primarily responsible for other tasks
than supporting the middleware, therefore this sort of
support cannot be considered guaranteed.

Apart from community support, commercial support is
frequently available. For example, several companies
offer guaranteed support for EPICS (Alceli Consulting
Cosylab and Observatory Sciences).

Economy of Scale
Middleware that has many users will likely outlive the

middleware with a smaller user community. This
correlation is valid both for proprietary as well as
community-developed middleware. In the first case, the
company developing the middleware will generate larger
revenues due to a large number of users, allowing for
more support manpower. In the second case, the users
themselves contribute to the middleware.

Simplicity
Complex middleware tends to be difficult to program

against, repealing developers from using it and looking
for more convenient alternatives.

Usually, complex middleware also has a large code-
base due to numerous features it supports. Consequently,
its memory footprint is larger, performance is worse, and
more maintenance effort is required.

Therefore, middleware should be as simple as possible,
and yet no simpler, as oversimplifications can lead to loss
of important functionality.

Maturity
Characteristics of immature software are that its API

changes frequently, and that every release brings about
numerous defects (bugs). For middleware, this is
particularly problematic, as all application-level software
uses the middleware, and might either need to change due
to middleware API’s changes, or be rendered unstable due
to a faulty release.

OBSOLESCENCE-PRONE
ARCHITECTURE

In this section, we outline two architectural approaches
that extend the lifetime of applications based on a
particular middleware.

When having an opportunity to develop applications
from scratch, it is a good idea to introduce an abstraction
layer that hides the underlying middleware’s APIs. If the
middleware needs to be replaced, only the
implementation of the abstraction layer needs to be
adjusted, and applications need not change.

More likely scenario is one where applications written
with “new” and “old” middleware need to co-exist. To

summarize [12], there are three approaches how this can
be achieved:

• Gateways – processes linked against both
middleware libraries, capable of translating from one
to another. This approach requires no modification of
applications, but offers least performance and
robustness.

• Client-side “plugs” – writing client applications
against an abstract API. Examples of such
architectures are the XAL framework used at SNS
[10], and Data Access Layer used at DESY and at
GSI [11].

• Server-side “translators” – server processes exposing
data via several middlewares, giving clients a choice
which middleware to use.

CONCLUSION
In this paper, we have outlined several aspects of

middleware that are correlated with its longevity. Long-
lived middleware would be available in open source (or
be proprietary but based on an interoperable open
standard), the support would be available – both from
user community as well as commercially, it would have
many existing users, it would exhibit simplicity, and its
maturity would be proven.

REFERENCES
[1] “EPICS – Experimental Physics and Industrial

Control System”; http://www.aps.anl.gov/epics.
[2] “TANGO – TACO Next Generation Objects”,

http://www.tango-controls.org/.
[3] “TINE – Three-fold Integrated Networking

Environement”, http://tine.desy.de.
[4] “OPC – OLE for Process Control”,

http://www.opcfoundation.org/.
[5] National Instruments, “NI LabVIEW”;

http://www.ni.com/labview.
[6] J. Meyer et al., “Upgrading the ESRF Accelerator

Control System after 10 Years of Operation”,
ICALEPCS’03.

[7] Ph. Gayet, R. Barillere, “UNICOS a framework to
build industry like control systems”, ICALEPCS’05.

[8] H. Brand et al, “The PHELIX Control System Based
on UML Design Level Programming in LabVIEW”,
ICALEPCS’03.

[9] G. Raffi, G. Chiozzi, B. Glendenning, “The ALMA
Common Software (ACS) as a Basis for a Distributed
Software Development”, Astronomical Data Analysis
Software and Systems XI, ASP Conference
Proceedings, Vol. 281, p. 103.

[10] J. Galambos et al, “XAL Application Programming
Framework”, ICALEPCS’03.

[11] I. Kriznar et al, “Beyond Abeans”, ICALEPCS’07
[12] P. Duval et al, “The Babylonization of Control

Systems Part II – The Rise of the Fallen Tower”,
ICALEPCS’03

Proceedings of PAC09, Vancouver, BC, Canada WE1RAC04

Controls and Operations

T04 - Control Systems 1797

