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Abstract 
The Metrology Light Source (MLS) [1] is in user 

operation since 2008. This versatile facility has to work at 
wide ranges of operating current and energy as well as 
different values for the momentum compaction factor 
according to user demands that vary even on very short 
notice. 

In parallel to machine commissioning, a software 
system has been developed to control and coordinate the 
broad manifold of machine states and meanwhile has 
evolved into an indispensable operator tool acting by 
itself on demand of a few high level commands. 

Actions range from plain device I/O to complex 
transactions and multiple device I/O. Design goal of the 
software is to keep and transfer machine and control 
system within well-defined and consistent states. 

MOTIVATION 
The Physikalisch-Technische Bundesanstalt (PTB), a 

main customer of the BESSY II facility, is the owner of a 
low energy electron storage ring, the Metrology Light 
Source (MLS), located close to the BESSY II storage ring 
in Berlin. The MLS has been designed and built by 
HZB/BESSY† according to the specifications of the PTB 
and is also operated by HZB/BESSY staff. It offers user 
service since April 2008 and is now running in routine 
operation.  

 
Table 1: Machine and Operating Parameters of the MLS 

Circumference 48 m 
Revolution Time 160 ns 
Injection Energy 105 MeV 
Operational Energy 105-630 MeV 
Beam Current 1 pA-200 mA 
Values for Momentum 
Compaction Factor α 

 

10-4 – 3x10-2 
 

Insertion Device Electromagnetic 
Undulator 23x180 mm 

 
Table 1 shows that the MLS has a wide range of 

operating modes and parameter settings. Additional 
demands on operating the machine emerge from the use 
of an electromagnetic undulator. The strong nonlinear 
fields enforce compensation with correction coils using 
feed-forward systems, otherwise accumulating and 
storing beam would not be possible. 

A ramping procedure was developed, that keeps the 

electron beam stored not only when ramping "up" (to 
higher energy) but also when ramping "down" (to lower 
energy). This way the energy ramp acts at the same time 
as a degaussing cycle. But as it does not drive the storage 
ring magnets into full saturation, some remanent fields 
cannot be cleared and strongly influence the machine 
dynamics. As a consequence any error in setting a magnet 
power supply amplitude or polarity can strongly 
deteriorate the machine performance and leave the 
machine in a different state even after completing the time 
consuming special designed degaussing procedure. 

Therefore it is crucial to avoid any operating error 
when establishing the desired user state in the MLS, 
which is best realized with completely predefined and 
automatically performed set up procedures. 

Another motivation for a high degree of automation 
originates from the fact that MLS commissioning work 
and operation is a service provided by HZB/BESSY to the 
PTB as a customer service. It should be as reliable and 
transparent as possible demanding user friendly interfaces 
and operation definitions. 

Operating the MLS includes injecting beam up to a 
desired current, ramping the energy and adjusting the 
momentum compaction factor α. All these services 
require multiple actions to set up the machine for the 
mode requested by the users (PTB). 

Since all signals that are required to determine the 
necessary steps are available as control system process 
variables, the decision was made to develop a software 
system performing the essential sequences of actions to 
get the machine into the desired states. 

 

SOFTWARE SYSTEM 

Finite State Machine 
Based on experiences with smaller applications at 

BESSY as well as at the MLS, the described software is 
developed as a hierarchical set of state machines.  

Finite state machines (FSM) are a well proven software 
concept to model and control behaviour of complex 
systems. A finite state machine – in this case a transducer 
that converts input (events) into output (actions) – 
consists of a set of all possible states of the modelled 
system along with all possible transitions between these 
states. The transitions are unambiguously performed on 
conditions associated with input events. Any transition as 
well as entering a state may initiate output actions. States 
describe possible situations of the whole system while 
transitions define when (condition) and how (action) to 
transform the system into another state. 

In a controls application, the input of a finite state 
machine usually consists of events resulting from 
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incoming changes of process variables from the 
underlying control system (EPICS, Experimental Physics 
and Industrial Control System), timer-events (esp. 
timeouts) and of course actions initiated by the user (e.g. 
using the graphical user interface). The output typically is 
any sequence of statements/operations limited only by the 
software environment, but particularly writing new values 
to the control system (modify process variables) and give 
feedback to the user. 

The very first version of the described program was a 
simple beam scrubbing automation, Fig. 1. After the MLS 
had been commissioned to a point where beam-
accumulation and ramping to the highest energy was 
possible, it was important, to keep the beam-current at 
this high energy above a certain limit during nights and 
weekends in order to improve beam-conditions. 

Figure 1: Simplified sketch of the first version. 
 

This software has since then evolved into an important 
helper application. The state machine as it is currently 
used was not developed by design according to a full 
specification. It has undergone an evolutionary process 
influenced by experiences from machine commissioning 
as well as from daily use of the application itself. Only by 
using the application, it is possible to detect situations not 
yet handled by the state machine (often even by operating 
errors). The procedures described by the user to solve 
these problems are then implemented in the state machine 
and undergo a refinement phase based on the experiences 
using them. Numerous small development steps have 
been made, some of which were later removed in favour 
of alternative solutions or have simply proven obsolete 
during the commissioning process. A clear view of what 
actions are appropriate to setup a certain state often 
eventually arises from formally describing the solution in 
close cooperation of developer and users/scientists. 

During this process, the application became an 
indispensable instrument performing all standard actions 
the operator has to take care of. It is an attempt to fill the 
gap between basic device control and the "one-button-
machine". 

By now, the main state machine (the Operation Master) 
consists of ~40 states and ~100 transitions. Other state 
machines, used to control sub-tasks add another ~20 
states and ~40 transitions. These state machines not only 
describe the command-sequences necessary to set up a 
certain state but also include handling of otherwise 
unexpected conditions and implement solutions to 
maneuver out of these exception states into the desired or 
another safe state. 

The whole system was running the MLS without any 
human intervention for about two weeks during holiday 
break 2008/2009 and performed well, Fig. 2. The only 
glitch was a microtron dropout that had to be cared for 
manually. This particular intervention is now part of the 
action-sequence to recover from microtron errors in the 
Operation Master, giving an example of how the system 
evolves by practical use.    

 

 
Figure 2: two-week run during holiday break 2008/2009. 

Energy Ramp 
Energy Ramp is the application to ramp the energy of 

the stored beam. Injection always runs at 105 MeV, and 
after injection has finished, the machine has to be ramped 
to the desired energy (up to 630 MeV). The driving 
parameter is a software parameter that corresponds to the 
energy. This parameter is smoothly driven to the desired 
end-value and is used as the input-value to an interpolated 
breakpoint table for each participating device. The output 
of the table is the corresponding set point for this device. 
All devices are synchronously driven to the desired 
energy minimizing beam-loss. 

The breakpoint tables are created with a semi-
automated process. The machine is setup for a certain 
energy, all magnets are hand-optimized and when 
finished, a special command stores the current settings in 
the appropriate breakpoint tables. 

Ramping usually is as simple as setting the target 
energy and hitting the "Go" button, but due to hysteresis 
in the magnets, ramping up and down have to use two 
different sets of breakpoint tables to not lose beam during 
ramp. These tables are only allowed to switch at the end-
points of the energy ramp, where they map to the same 
values. Hence ramping to an arbitrary energy may require 
ramping to the endpoint in previous ramp-direction first 
before ramping to the desired energy (e.g. 105MeV  
450MeV  300MeV won't work, must ramp 105MeV  
450MeV  630MeV  300MeV instead). 

This constraint is not implemented in the Energy Ramp 
itself, but has to be followed by the caller. The Operation 
Master takes care of this, and switches tables properly. 

The Energy Ramp is one example of a separate 
application that also uses a state-machine as the 
controlling entity. All interaction with this application is 
handled via control system process variables.  

Optics Change 
Another tool that is currently being developed is an 

application to change the optics of the machine by 
modifying the momentum compaction factor α. It will be 

wait 
@630MeV 

inject 
@105MeV 

when current > minLimit 

do switch off injection 

when current < minLimit 

do switch on injection 
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very similar to the energy ramp application. The driving 
value corresponds to the synchrotron frequency. 
Operation Master 

Both applications will be managed by the Operation 
Master so the operator just defines and sets the main 
parameters (current, energy, alpha …) and issues the 
initial command to start transition. The Operation Master 
takes care of all necessary steps to get from the current 
state to the desired parameters which may involve any 
subset of injection sequence, energy-ramping and optics-
change. It is the central controlling instance keeping track 
of several decentralized non-linear processes. 

IMPLEMENTATION 
The current implementation is a modular application 

written in Tcl/Tk, which is a proper choice for rapid 
prototyping and development of an exemplar application 
including a graphical user interface. But as the system 
settled and stabilized some drawbacks of a monolithic 
application became immanent. To avoid conflicts, the 
system has to ensure that only one instance is actively 
running, and the current status of the Operation Master is 
only visible on a single screen. Hence the current setup is 
using one dedicated operator-console to run the Operation 
Master and display the application main window. 

State Machine 
The state machine module consists of a set of states 

and all transitions between these states as well as all 
possible actions to be performed during transition or 
when entering a state.  

• A state is defined by its name, an optional action to be 
performed when the state is entered and a set of 
transitions. 

• A transition is defined by a condition, an optional 
action and a target state. As soon as the condition gets 
true, the action is performed and the target state 
becomes the next active state. 

As an example, a state may be coded as follows: 
 

 state “InjectionRunning” { 
  when (current >= maxLimit) { 
  } nextState “SwitchInjectionOff”; 
 

  when (microtronState == “ERROR”) { 
   ResetErrorsOnMicrotronPLCs() 
  } nextState “RecoverMicrotron”; 
 

  when ( timeout(injectionTimeout) ) { 
   msg(“timeout during injection”); 
  } nextState “RecoverInjection”; 
 } 

State Engine 
The state engine is the actual processor that runs the 

state machine. On external events, it checks for all 
possible transitions of the current state and also manages 
timeouts. The state engine is just about 10% of the source 
code and has not been modified for more than a year now. 

Graphical User Interface 
The current implementation features its own graphical 

user interface. The operator completely controls and 
monitors the software using this interface. These 20% of 
the source code are closely related to the state machine. It 
not only displays information about the current state, 
provides acces to all controlling parameters and permits 
operator interaction if appropriate, but also displays the 
history of actions and messages and logs these to a file for 
later analysis. 

FUTURE DEVELOPMENT 
To overcome the shortcomings, the software has been 

redesigned and the application is separated from the 
graphical user interface. 

Work-in-progress is currently to transform the 
Operation Master into a pure headless server process. All 
interaction with the Operation Master will happen 
through process variables using the control system 
infrastructure. The user interface will be a control display 
handled by the control system display manager that can 
be opened on all displays that have access to control 
system data (read/write as well as read-only). Control 
system process variables will be the only communication 
vehicle to control and monitor behaviour of the Operation 
Master.  

Additionally, all other EPICS tools can be used to 
control and monitor activities. As an example, the alarm-
handler can be used to alert/notify operator and others on 
unexpected events and the archiver may be used to log 
activity of the Operation Master for diagnostic and 
development purpose. This way, the application integrates 
very well into the existing control system infrastructure. 

Although EPICS provides a powerful tool to implement 
finite state machines in an extended C syntax, the 
dynamic object-oriented programming language Python 
was chosen to implement new version of the Operation 
Master. 

CONCLUSION 
The Operation Master minimizes errors due to 

inadvertences and avoids mistakes by taking the load of 
precisely following complex command sequences off the 
operator. It also implements standard mechanisms to 
recover from failure situations as long as no human 
interaction is necessary.  

Experiences and the convincing success of the system 
are very encouraging to use the same system to develop 
new core control system components for other currently 
running as well as upcoming projects at 
BESSY/Helmholtz Zentrum Berlin. 
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