
NEW USER INTERFACE CAPABILITIES FOR CONTROL SYSTEMS*

K.U.Kasemir, ORNL, Oak Ridge, TN 37830, U.S.A.

Abstract
Latest technologies promise new control system User

Interface (UI) features and greater interoperability of
applications. New developments using Java and Eclipse
aim to unify diverse control systems and make
communication between applications seamless. Web
based user interfaces can improve portability and remote
access. Modern programming tools improve efficiency,
support testing and facilitate shared code. This paper will
discuss new developments aimed at improving control
system interfaces and their development environment.

LEGACY USER INTERFACES
Control System (CS) UIs were typically limited to one

operating system. Tools were often a disjoint mixture of
standalone applications. A top-level UI launcher can
attempt to provide common access to the tools, but there
is little data exchange between the running instances of
for example the main operator interface panel, the strip-
charting tool, or the alarm display [1]. Each tool has a
different optical design, which is typically static and
cannot be customized. If tools provide online help, it is
found in different places.

MODERN USER EXPERIENCE
In contrast, prevalent desktop automation tools like

word processors or email clients have a consistent design.
They all include online help; their features are highly
configurable. They interoperate to allow sending a text
document as email, or to open a received document in the
word processor [2]. More of these applications now
become web-based, accessible from every operating
system with a web browser [3,4]. Some online tools even
try to offer automatic links to related information, where a
stock price ticker might for example point to news that
explain the variations in the price of a stock [5].

CONTROL SYSTEM UI TRENDS
It is impossible to list all developments related to

control system UIs worldwide. Some are based on
commercial packages [6], others start to use web
technology [7].

Java
A common denominator for developments that are

shared by more than one installation seems to be the
choice of Java technology [8]. One application example is
a powerful control panel editor for multiple CS network
protocols [9]. Another is the accelerator application

library (XAL) and toolbox used by several sites for the
rapid development of numerous physics applications [10].

Because of Java, the development tools as well as the
resulting applications can be free and portable. Most
development tools support full source-level debugging,
sophisticated source code navigation, and automated unit
testing, which help to develop robust software.

Unfortunately, end users can often tell Java applications
from those native to an Operating System (OS). Launched
by scripts to configure the CLASSPATH and invoke the
Java virtual machine, the task bar or process list will show
“java” instead of the actual application name. In addition,
a mere collection of Java applications is still as disjoint as
the legacy applications written in other languages.

Eclipse
The Eclipse Rich Client Platform (RCP) [11] is a

framework for building Java applications that appear
native to the user and offer a modern, professional look.
RCP supports multiple document views, online help in
various forms, user-settable preferences, and persistence
of settings across application restarts.

RCP is based on a dynamic plug-in model and an
elaborate extension point mechanism. Plug-ins are self-
describing and auto-initializing bundles of code. Plug-ins
can be developed by different people at possibly distant
sites, yet hook into the same menu bar, contribute to a
common online help system, and thereby present
themselves to the end user in a uniform product [12].

CONTROL SYSTEM STUDIO
The Control System Studio (CSS) initiative uses

Eclipse RCP to develop a modern, portable and consistent
set of CS applications [13]. CSS defines data types for
CS-specific items like Process Variables (PVs). It declares
extension points for providing live or historic PV data,
and includes implementations for EPICS [14] or other
control systems.

Figure 1: “Probe” with Chinese localization.
 __

* SNS is managed by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 for the U.S. Department of Energy

Proceedings of PAC09, Vancouver, BC, Canada WE1RAI01

Controls and Operations

T04 - Control Systems 1781

CSS APPLICATION PLUG-INS
The following list of CSS plug-ins is not complete but

meant to show which types of plug-ins are possible.

Simple CSS Tools
The CSS “Probe” plug-in allows users to display the

current value of a PV (Fig. 1). The “EPICS PV Tree”
displays EPICS record links. These are indeed simple
tools, but compared to the legacy EPICS “probe” tool this
version is fully resizable, keeps a per-user history of
previously inspected PV names, and also offers
localization.

Data Browser
The Data Browser (Fig. 2) is an interactive plotting or

strip-charting tool for historic as well as live PV samples.
Users can zoom in and out, pan back and forth, add
annotations, customize the appearance of the plot in
several ways or export the data. It supports multiple
archive data sources at the same time.

Synoptic Display
The Synoptic Display (Fig. 3) is an operator interface

editor and runtime engine. It offers the usual graphical
base elements as well as control system widgets like
meters, sliders or buttons. It has extensive editing
features.

At runtime, every aspect of a widget can be dynamic so
that the position, size, color or font of a widget changes to
reflect the current value of a PV. It therefore bridges the
gap between easy to use yet limited control system UI
editors, and tools which offer more flexibility but require
programming skills for even the simplest operator display.

Spallation Neutron Source (SNS) Alarm System
The SNS alarm system (Fig. 4) uses CSS plug-ins to

display the currently active alarms in either a tabular list
or a hierarchical tree view, allowing operators to
acknowledge alarms, invoke related operator displays to
handle the alarm or access guidance messages. It is also
used to configure the alarm system online, or to inspect
the history of a certain alarm.

ECLIPSE FEATURES
 Like their legacy counterparts, each of the tools

highlighted so far would be useful in an accelerator
control room as individual applications. They can become
more useful, however, when they interact within a
unifying context.

Workbench
The Eclipse Workbench presents all CSS tools in a

common desktop environment with a shared menu and
tool bar. Users can open, close and position the available
panels, for example the configuration section of the Data
Browser and an instance of Probe, to their liking, and this
state is then preserved through restarts of CSS. Users can
define more than one layout and save each as a named
Perspective. The Workbench includes a file browser that
will for example start the Data Browser when opening one
of its configuration files.

It is important to understand that simply adding a plug-
in to CSS will cause its menu entries and tool bar icons to
appear in the Workbench, just as its online help and
preferences options described below will be integrated
into the CSS product. There is no need to manually
“rebuild” the CSS product when plug-ins are added or
removed.

Figure 2: “Data Browser” plot with archive browser and
configuration panel.

Figure 3: “Synoptic Display” editor.

Figure 4: SNS Alarm System State diagram in online
help.

WE1RAI01 Proceedings of PAC09, Vancouver, BC, Canada

1782

Controls and Operations

T04 - Control Systems

Localization
Eclipse supports localization during the software

development cycle by aiding in the externalization of UI
texts to files, and at runtime by loading the correct
localization files based on the operating system’s locate
settings. This way, most CSS tools now support English
and German localization, some even Chinese (Fig. 1).

Integrated Help and Preference System
All plug-ins can contribute their help (Fig. 4) or

preference settings (Fig. 5) to the Eclipse help resp.
preference UI, allowing users to search the online help for
information on any plug-in, or to configure any of the
installed plug-ins in a common way.

In addition to a help system similar to web pages
Eclipse offers a Cheat Sheet system where users can
select interactive step-by-step instructions, for example
for displaying archived data in a plot.

Figure 5: Preference panel opened to edit Alarm System
settings.

CSS FEATURES
CSS enhances Eclipse with extension points and default

implementations for control system connectivity.

Live and Historic Data Support
Tools like Probe or the Data Browser are not hard-

coded to the interfaces or network protocols of a specific
control system. Instead they utilize extension points to
access live and historic data access. Implementations are
available for live data from EPICS, and historic data from
various versions of the Channel Archiver.

PV Exchange
CSS defines data types for control system related

objects including PVs. This allows CSS tools to
implement type-specific Drag-and-Drop data exchange,

where the tools can react in different ways to for example
a received PV name or Front-End controller name.

An Eclipse mechanism called Object Contribution
allows PV tools like Probe or the Data Browser to request
addition to context menus. At the same time, tools that
display PV related information notify the Eclipse
Workbench about currently selected PV names.

In combination this allows users to right-click on most
PV related display items, and send the PV names to any
of the other PV-related CSS tools. Figure 6 shows how
the context menu of an active alarm in the Alarm Table
leads to the Data Browser, which would then open up and
display the recent history of the PV. If not already
running, Eclipse will start the invoked tool and send the
selected PV names to it. This CSS approach is much more
convenient than legacy tools which required users to
manually start the “target” application, then copy and
paste PV names between tools.

Electronic Logbook Access
CSS provides an API for making text and image entries

into an electronic logbook (E-Log), so that users can
conveniently log information about current alarms from
the SNS alarm UI, or submit commented snapshots of
Data Browser plots.

Since electronic logbook systems differ for each
accelerator, a CSS extension point allows site-specific
plug-ins to provide the logbook implementation, which is
currently available for the Oracle-based SNS ELog [15].

Authentication, Authorization
For applications like an alarm handling system where

actions should be performed by known, i.e. authenticated
users, and configuration changes must be limited to
certain individuals, CSS offers role-based authentication
and authorization. The implementation is again based on
extension points, with existing plugins for Kerberos or
LDAP-based Authentication and Authorization.

Site-Specific Packaging
The addition or removal of plugins from a CSS

installation is fundamentally as easy as adding or
removing a Java Archive ‘jar’ file. CSS generates error

Figure 6: Context Menu activated on a PV in the SNS
Alarm Table, allowing user to send the PV to for
example the Data Browser.

Proceedings of PAC09, Vancouver, BC, Canada WE1RAI01

Controls and Operations

T04 - Control Systems 1783

messages when a required extension is missing, for
example when no plugin for live PV data access is found,
or it will simply suppress related features like E-Log
submission when no implementation is available.

The sheer number of available plug-ins and their
interdependencies can, however, be confusing, so each
site should choose a suitable deployment strategy. Some
may provide a bare-bones CSS product and allow end-
users to download collections of related plug-ins, bundled
as Eclipse Features, from an online site which can later
also provide version updates. Others may prefer to
provide a site-specific CSS product that already contains
all relevant plug-ins, with preconfigured settings for the
local accelerator [16].

The CSS administrator at a site can adjust the
application startup code such that it prompts for login
information, a workspace directory or other site-specific
needs. The addition of a “splash” screen and a “welcome”
page to guide users during their first steps then results in a
product that is customized for local needs, but at the same
time offers professional appearance and functionality.

WEB APPLICATIONS

Following the trend towards web technology, there are
first CS applications that offer zero-install remote access
from a web browser, exemplified in Fig. 7. While very
convenient for the user, they still face a few problems.

Web browsers differ, especially regarding features that
are important for highly interactive web sites, a problem
which is beginning to be addressed by compatibility
libraries [18].

When CS data needs to be redirected through web
protocols, the response time suffers. Add-ons that allow
the browser to directly communicate with the control
system solve this problem [19], but are no longer zero-
install, face browser incompatibility, and reopen security
issues which the move to web protocols was supposed to
solve.

Finally, web applications consist of code running on the
web server, often in Java or a scripting language, code
running in the browser, usually a combination of Java
Script, style sheets and HTML. This distributed mix of
technologies is harder to debug and maintain than a
single-source Java application. The Eclipse Rich Ajax
Platform (RAP) promises an RCP-like Java development

environment, but resulting in a product can be deployed
as a web application [20, 21].

CONCLUSION
Many ongoing CS UI developments are based on Java

to create portable tools. By also adopting Eclipse
technology like CSS, a disjoint collection of individual
tools can turn into a homogeneous product.

ACKNOWLEDGEMENTS
CSS is very much a combined effort, see [13].

REFERENCES
[1] “MEDM”, “StripTool”, “ALH” and other network

client tools for EPICS,
http://aps.anl.gov/epics/extensions

[2] Microsoft Office, http://office.microsoft.com
[3] Google Docs, http://docs.google.com
[4] Google Mail, http://mail.google.com
[5] Google Finance, http://www.google.com/finance
[6] Xihui Chen et al, “Detector Control System of

BESIII”, ICALEPCS07, Knoxville, TN.
[7] E. Matias, “Remote Access to the Canadian Light

Source”, PCaPAC08, Ljubljana, Slovenia.
[8] Java Technology, http://java.sun.com
[9] Elke Sombrowski et al, “JDDD: A Java DOOCS

Data Display for the XFEL”, ICALEPCS07,
Knoxville, TN.

[10] Tomas Pelaia II, “XAL Application Framework and
Bricks GUI Builder”, ICALEPCS07, Knoxville, TN.

[11] Eclipse, http://www.eclipse.org
[12] Eric Clayberg, Dan Rubel, “Eclipse Plug-ins”,

Addison-Wesley, 2008
[13] Control System Studio, http://css.desy.de
[14] Experimental Physics and Industrial Control

System, http://www.aps.anl.gov/epics
[15] Thomas Pelaia II, “SNS Electronic Logbook”, EPICS

Collaboration Meeting, Santa Fe, NM, 2004
[16] CSS for the Spallation Neutron Source, http://ics-

web.sns.ornl.gov/css
[17] Presentation slides for [7]
[18] Google Web Toolkit,

http://code.google.com/webtoolkit
[19] Web CA, http://webca.cosylab.com
[20] Ralf Sternberg, Rüdiger Herrmann: “Single

Sourcing RCP and RAP” - Desktop and web clients
from a single code base: EclipseCon 2009, Santa
Clara, CA.

[21] Eclipse Rich Ajax Platform,
http://www.eclipse.org/rap

Figure 7: Selecting a scan region in a web-based remote
beam-line tool [17].

WE1RAI01 Proceedings of PAC09, Vancouver, BC, Canada

1784

Controls and Operations

T04 - Control Systems

