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Abstract*

INTRODUCTION

The head-tail modes are described for the space charge 
tune shift significantly exceeding the synchrotron tune. A
general equation for the modes is derived. The spatial 
shapes of the modes, their frequencies, and coherent 
growth rates are explored. The Landau damping rates are 
also found.

The head-tail instability of bunched beams was 
observed and theoretically described many years ago [1-
3]. Since then, this explanation has been accepted and 
included in textbooks [4,5], but still there is an important 
gap in the theory of head-tail interaction. This relates to 
the influence of space charge on the coherent modes: their 
shapes, growth rates and Landau damping. In Ref. [6], an
analytical description of the coherent modes was found 
for a square well model, air-bag distribution and a short-
range wake function. Later, the air-bag limitation was 
removed for zero-wake case in the square well [7]. 
Compared to Ref. [6,7], an attempt of this paper is both 
broader and narrower. It is broader since there are no 
assumptions about the shape of the potential well, the
bunch distribution function, and the wake function. The 
Landau damping is calculated in this paper. From another 
aspect, my approach is narrower than that of Ref. [6], 
since it is assumed that the space charge tune shift in the 
bunch 3D center maxQ is large compared to both to the 
synchrotron tune sQ and the wake-driven coherent tune 
shift wQ : ws QQQ ,max .

More detailed version of this paper is given by Ref. 
[10].

Let θ be the time in radians, τ - a distance along the 
bunch in radians as well, )(iX - a betatron offset of i-th 

particle, and ),(X - an offset of the beam center at the 
given time θ and position τ. The bare betatron tune bQ
can be excluded by using slow variables )(ix :

)()exp()( ibi xiQX .
A single-particle equation of motion can be written as 
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xixixxiQx iiiiii Ŵ)()(v))(,()())(()( . (1)

Here ddxx ii / ; / with )/(/ ppddQb ,
22

t , Q(τ) is the space charge tune shift as a
function of the position inside the bunch τ, )()(v ii ,

and xŴ is the wake force expressed in terms of the 
wake linear operator Ŵ to be specified below. 

Eq. (1) assumes a rigid-slice approximation. This 
approximation is based on the idea that the transverse
coherent motion of the beam can be treated as 
displacements of beam longitudinal slices, so the force on 
a given particle is just proportional to its offset from the 
local beam centroid. For a coasting beam, the validity of 
the rigid-slice model is discussed in Ref. [8]. The rigid-
slice model requires a sufficient separation between the 
coherent frequency and the incoherent spectrum: the 
separation has to be significantly larger than the width of
the bare incoherent spectrum. As a result almost all the 
particles respond almost identically to the collective field. 

The chromaticity term can be excluded from Eq. (1) 
with a substitution ))(exp()()( iii iyx , leading to

)ˆˆ())(,()())(()( yyiyyiQy iiii DW (2)
with
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Here 0r is the classical radius of the beam particles; 
R=C/(2π) is the average ring radius; β and γ are the 
relativistic factors, )(s is the bunch linear density
normalized on the number of particles in the bunch,

bNdss)( . The wake-function W(s) is defined 

according to Ref [4] (slightly different from the definition 
of Ref. [6]), detuning function D(s) is defined according 
to Ref. [9].

We begin from solving Eq. (2) for the no-wake case.
Next the wake is taken into account as a perturbation of 
the space charge eigen-modes. These unperturbed eigen-
modes are to be found from the no-wake reduction of Eq. 
(2):  
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))(,()())(()( iiii yyiQy                  (4)
Solutions of this equation give the space charge eigen-
modes: their spatial shapes and frequencies. The modes 
do not depend on the chromaticities, except for the 
common head-tail phase factor )exp( i . The 
chromaticity enters into the problem through the wake 
term, Eq. (3), affecting the coherent growth rates. As it 
will be seen below, the chromaticity normally makes the
coherent growth rates negative for the modes, which 
number k is smaller than the head-tail phase, k , with 
σ as the rms bunch length.

In this section, an ordinary differential equation for the 
eigen-modes is derived for a general potential well and 
3D bunch distribution function, assuming strong space
charge,

skQQ . As a result, all the individual degrees of 
freedom are detuned from the coherent motion by 
approximately the same number, namely, the local space 
charge tune shift. Consequently, locally all the particles 
are moving almost identically. That is why the space 
charge modes are described by single-argument functions 
dependent on the position along the bunch only. 

The single-particle equation (4) can be solved in 
general:

.))(()(

;))()(exp())(,())(()(

0

dQ

diiyQiy

i

iii (5)

Since Q(τ) > 0, Ψ(θ)  is  monotonic and so integration 
over θ in Eq. (5) can be replaced by integration over Ψ:

.)exp()()( diiyiyi                  (6)

When the space charge tune shift is so high that 
skQQ ,

the phase Ψ runs fast compared with relatively slow
dependence )(y , so the later can be expanded in a 
Taylor series:
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After that the integral is easily evaluated:
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To come back to original variables, one can use that
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Applied to Eq. (7), this gives
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Now we can average over velocities v at the given 
position τ, neglecting the eigenvalue 

k
in the second-

order term of Eq. (9). After that, the equation for eigen-
modes follows as a second-order ordinary self-adjoint 
differential equation:
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where f(v,τ) is a normalized steady-state longitudinal 
distribution function, f(v,τ) = f(H(v,τ)), with H(v,τ) as the 
longitudinal Hamiltonian.

Actually, Eq. (10) is valid for any beam transverse 
distribution, after certain redefinition of the space charge 
tune shift )(Q . Indeed, the single-particle Eq. (9) does 
not make any assumption about the individual space 
charge tune shift dependence )(Q , which can be 
considered as dependent on the transverse actions

ii JJ 21 ,
as well: ),,()()( 21 iii JJQQQ . The averaging of Eq.
(9) just has to take into account this dependence of the 
space charge tune shift on the transverse actions. As an 
example, for a Gaussian round beam, i.e. a beam with 
identical emittances and beta-functions, the transverse 
dependence of the space charge tune shift can be 
calculated as [8]:
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Here 21 , JJ are two dimensionless transverse actions, 
conventionally related to the offsets as )cos(2 111Jx
with 1 and 1 as the rms emittance and beta-function, so 
that the transverse distribution function 
is )exp(),( 2121 JJJJf .                 

The transverse averaging of Eq. (9) requires calculation 
of two transverse moments 21 , qq of the tune shift 

),,( 21 JJQ generally defined by:

p

p
p

pp
p

pp
i

JJgJJfdJdJq

QqJJQJJfdJdJ(τQ

/1

0 0
212121

max
0 0

212121

),(),(

.)(),,(),()
(12)

After that, Eq. (10) follows for any transverse distribution 
with a substitution

)(/)()( max1
2

2eff QqqQQ
For the round Gaussian distribution, it yields 58.01q ,

55.02q , 52.03q , and 52.0/ 1
2

2 qq .
For any real eigenvalue ν, Eq. (10) has two independent

solutions, even and odd one. In general, these solutions
tend to non-zero constants at the tails, )())(lim( yy ,
while their derivatives )(y tend to zero,

)(
)0(
)(

)(
eff

eff ba
Q
Q

y ,                   (13)

with constants a and )(yb being determined by the 
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eigenvalue ν. Any boundary condition would select a 
sequence of discrete eigenvalues. Note that the strong 
space charge and rigid beam approximations fail at the 
bunch tails. Namely, these assumptions are violated at 
that longitudinal offset, where the function )(y cannot 
be considered as slow function of the space charge phase 
Ψ (see Eqs. 5-9). This happens at * , where

)()( ** yy
d
d .

Using Eq. (5,13), this yields an equation for that model-
break point * at the bunch tail:

)(/|)(|)()( **** QQuQ .                        (14)
The individual particles, being essentially in coherent 
motion before that, go incoherently after that, so this 
point can be called as a decoherence point. The gradients 
in coherent motion smear out much faster after that point, 
than it would go according to Eq. (13). Thus, we are 
coming to the boundary condition:

0)( *y .                               (15)
This boundary condition is identical to what would be 
required if there were a vertical potential barrier at the 
model-breaking point. This additional meaning of this
boundary condition appears to be reasonable by itself. 
Indeed, setting that barrier at the model-breaking point 
makes the model applicable everywhere. At the same 
time, since it is set at that far tails, it almost does not 
change the collective dynamics of the bunch. The idea of
model breaking implies that the right-hand side of Eq. 
(14) is defined up to a numerical factor ~ 1. However, 
since at the far tails the left-hand side of Eq. (14) is 
extremely fast function of its argument, the decoherence 
point * is defined with rather good accuracy at strong 
space charge. 

Eqs (10, 15) reduce the general problem of eigen-
modes to a well-known mathematical boundary-value 
problem, similar to the single-dimensional Schrödinger 
equation. This problem is normal, so it has full 
orthonormal basis of the eigen-functions at the interval 
( * , * ).

kmmk u
dyy

)(
)()(

*

*

.                     

As a consequence, 

0
)()()()(

m
mm susyy .                      

At the bunch core, the k-th eigen-function )(tyk behaves 
like )/sin(~ k or )/cos(~ k , and the eigenvalues are 
estimated to be

,)0(/ eff
22

ssk QQQk                   (16)
which are similar to the values in the square well case.
For a weak head-tail case, the coherent tune shift and the 
coherent detuning are given as perturbations, by their 
diagonal matrix elements, similar to the analogous 
Quantum Mechanical results:

.)()()()(

,)()()()())(exp()(

12

1

dsduyssDQ
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k
τ

d

kk
τ

w (17)

From here, it follows that a sum of all growth rates is
zero:

0Im
0k

wQ .                                   (18)

This statement sometimes is referred to as the growth 
rates sum theorem. Note also that the detuning wake does 
not introduce any growth rate, and every growth rate is 
proportional to the head-tail phase when this phase is 
small, similar to the conventional no-space-charge case.

For a short wake, )()( GW , the growth rate can 
be expressed as  

,)()()(;Im 12 duyGQ kkkw
(19)     

in agreement with the special result for a square well 
found in Ref. [6]. 

Growth rates (17) as functions of the head-tail phase for 
a Gaussian bunch and resistive wake sWsW /)( 0

are 
presented at Fig.2.

The Gaussian distribution in phase space,

,)2/2/vexp(
2

),v( 2222 u
u

N
f b (20)

describes a thermal equilibrium of a bunch whose length 
is much shorter than the RF wavelength. Below, natural 
units for Eq. (10) for the Gaussian bunch are used. The 
distance τ is measured in units of the bunch length σ, and 
the eigenvalue - in units of )0(/)0(/ eff

2
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Figure 1: The first  five eigenfunctions for  the  Gaussian  
beam at 5.2* (or q=60) as functions of the 
dimensionless distance along the bunch τ, Eq. (21). The 
eigenfunctions are identified by their mode numbers.

Then, the boundary-value problem of Eqs. (10, 15) is 
written as

  MODES FOR GAUSSIAN BUNCH 
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This equation is easily solved numerically. A list of first 
ten eigenvalues 

k
found for τ*=1.5, 2.0 and 2.5

(corresponding to q=5, 15 and 60) is presented in the 
Table 1.

Table 1: First ten eigenvalues 
k

of the Gaussian bunch
(Eq. 21) for τ*=1.5, 2.0, 2.5 or q=5, 15 and 60, q>>2k

τ* \ k 0 1 2 3 4 5 6 7 8 9
1.5 0 1.2
2.0 0 0.78 4.0 9.2 17
2.5 0 0.55 3.2 7.7 14 22 32 45 60 75

All these eigenvalues are limited as
...2,1,0;2/2/ 22 kkkkk k

                (22)
These numbers are only logarithmically sensitive to the 
space charge parameter kq 2 . The first four 
eigenfunctions, normalized to the unit energy, 

,1)(
2
1 2/2 2

deyk                       (23)

are shown in Fig. 1.
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Figure 2: Coherent  growth  rates  for  the  Gaussian  bunch  with  
the resistive wake sWsW /)( 0

as functions of the head-
tail phase , for the lowest mode 0 (red), mode 1 
(blue), 2 (green), 3 (magenta) and 4 (cyan).

With the modes of the Gaussian bunch found, the 
coherent growth rates can be calculated according to Eq. 
(17), see Fig. 2.

Landau damping is a mechanism of dissipation of 
coherent motion due to transfer of its energy into 
incoherent motion of resonant particles. This energy 
transfer is impossible at the bunch center, where the 
coherent and incoherent frequencies are strongly 

separated, but it gets effective at the bunch tails, where 
the local incoherent space charge tune shift becomes 
small enough. For a given location τ, this energy transfer 
occurs for those particles whose velocities 

iv and 
individual space charge tune shifts )(iQ relate as

iiii QQQ v)(/|)(v|/v)( .                   (24)
The individual local space charge tune shift in Eq. (24) is 
a function of the two transverse actions:

),,()( 21 JJQQi .                         (25)
Using that the particle’s longitudinal offset and velocity 
relate to its longitudinal action,

,
2

v
2

22

||J                             (26)

this defines at the given longitudinal position τ a 2D 
Landau surface in the space of three actions 

||21 ,, JJJ :

.
2

),,(
2 2

21
22

||
JJQ

J                     (27)

After passing its ‘Landau point’ (24), the particle gets the 
variable part of the coherent amplitude   

|)(|/)()()(~ QQyy                 (28)
as its incoherent amplitude. For the Gaussian distribution

/)()(~ yy .                        (28a)
After M times of passing its Landau point, the particle 
gets its individual amplitude excited by

,
)2/sin(
)2/sin(~~)( 2/
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M
eyeyMy iM
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m

im
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where ψ is the space charge phase advance Ψ per 
synchrotron period

s
, see Eq. (5). The entire Landau 

energy transfer for the bunch after M>>1 turns can be 
expressed as

,
)2/(sin
)2/(sin~)(4)(

2

2
2 M
yfdME JJ

where J is 3D vector of the three actions, and the 3D 
integral over actions has to be understood as

,(...)(...)
0

||

00
21

J
ddJdJdJ .

The contributions from particle entering and leaving the 
tails are assumed equal in magnitude but with random 
relative phase. The power of the Landau energy transfer is 
calculated as 

.)2()(

,)(~)(4)( 2

n
P
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s

n

yfdQ
dMT
MEd

E JJ               

Since ψ>>1, the sum over many resonance lines n can be 
approximated as an integral, )2/(1)(P , yielding

.~)(
2 2yfd
Q

E s JJ                     (29)

From here, the Landau damping rate 
kk EE 2/

follows for any kind of bunch 3D distribution, with Ek as 
the energy number:

dyNEyfd
E
Q

kbkk
k

s
k )()(;~)( 212JJ (30)
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For the longitudinal Gaussian distribution, assuming the 
eigenfunctions normalized by the unit energy Ek, as they 
were calculated in the previous section, it yields

.)( 2
2
*

k
s

k yfd
Q

JJ                  (30a)

According to Eq. (21),  asymptotically

,)2/exp()(
)0(
)(

)( 2
*

eff

eff
* b
Q
Q

by (31)

where the asymptotic parameter b can be calculated for 
every eigenmode, b=bk. For the modes of the Gaussian
bunch, numerically found squares of these parameters are 
presented in the Table 2; the damping rate is seen as 
extremely sensitive to the mode number. Since the 
number of the lowest potentially unstable mode is about 
the chromatic head-tail phase, an increase of the 
chromaticity has to be a powerful tool for the beam 
stabilization. 

Table 2: Mode asymptotic parameters 2
kb for Gaussian 

bunch 

τ*\k 0 1 2 3 4 5 6 7 8 9
1.5 0 2.5

2.0 0 1.3 15 64 160

2.5 0 0.85 7.5 40 105 260 500 1060 1700 2300

For the Gaussian bunch, the Landau damping rate is
calculated as  

.
)0(

;/5.1 eff32

s
skk Q

Q
qqQb                        (32)

Note that the synchrotron tune and the space charge 
tune shift enter in high powers in Eq. (32). 

Eqs (30, 32) give Landau damping, assuming ideally 
linear lattice and longitudinal RF force. That is why that 
kind of Landau damping can be called intrinsic.  
Although the method of calculation is general, the 
specific results assume small coherent tune shift between 
the two neighbor modes, )0(/ eff

2 QQQ sw
. In particular, 

independence of the Landau damping rate of the 
chromaticity should not be expected for larger wake 
terms.

Similar method was applied to calculate Landau 
damping rate caused by the lattice nonlinearity; the results 
can be found in Ref. [10].

SUMMARY
In this paper, a theory of head-tail modes is presented 

for space charge tune shift significantly exceeding the 
synchrotron tune, which is rather typical case for hadron 
machines. A general equation for the modes is derived for 
any ratio of the synchrotron tune and the wake-related 
coherent tune shift. Without the wake term, this is a 2-nd 
order self-adjoint ordinary differential equation, known to
have full orthonormal basis of the eigenfunctions. The 
spectrum of this equation is discussed in general and

solutions for the Gaussian bunch are presented in detail. 
Intrinsic Landau damping of the space charge modes is 
calculated. Lattice nonlinearity as a source of additional 
Landau damping is taken into account in more detailed 
Ref. [10], where also specific behavior of transverse 
mode coupling instability for the space charge modes is 
discussed. 

The presented theory needs to be compared with 
simulations and measurements. The author hopes this will 
happen in a near future.
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