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Abstract 

The influence of resonances on beam dynamics in 
storage rings is of a substantial interest to accelerator 
physics. For example, a fast crossing of resonances 
occurring in the damping rings of future linear colliders 
during the beam damping (due to the incoherent shift) can 
result in a loss of particles. We have studied 
experimentally the crossing of resonance near the 
working point of the VEPP-4M storage ring. Observation 
of the beam sizes and particle losses was performed with 
a single-turn time resolution. Comparison with the 
numerical simulation has been made and will be 
presented alongside the experimental results.  

INTRODUCTION 
A series of experimental studies of the beam passage 

through the third-order betatron resonance was performed 
at the VEPP-4M electron storage ring in Novosibirsk 
during the last two years [1]. This paper summarizes the 
recent results obtained in these experiments. 

The interest to this experimental work was inspired by 
the involvement of BINP in the carbon ion therapy project 
[2], where the resonance extraction of the ion beam is 
foreseen, and by the study of beam dynamics with strong 
damping and space charge in the CLIC damping ring [3]. 

It is essentially important for the ion beam extracted at 
the resonance with therapeutic purpose to have highly 
predictable, controllable and constant extraction rate.  
Meanwhile, this rate is very sensitive to the extraction 
conditions, PS ripple, aperture limitation, etc. This fact 
calls forth an importance of the experimental 
measurements of the beam behavior during the resonance 
crossing. 

The beam damped in the damping ring with the 
emittance reduced by 2-3 orders of magnitude. A strong 
space charge potential together with highly nonlinear 
lattice causes the core beam tune shift (mainly in the 
vertical direction) as much as ~0.1-0.2, while the particles 
in the beam tail are smeared in the betatron tunes due to 
the tune-amplitude dependence. During the damping, the 
particles cross many resonances and, as a computer 
simulation has shown, may be either trapped inside the 
stable resonance islands or lost at the unstable resonances. 
This mechanism may influence the quality of the beam 
extracted from the damping ring to the linear collider. 

In this report we discuss the results of experimental 
study of the resonance passage at the VEPP-4M collider. 
The third-order resonance 233 =zν  was traversed by the 
electron beam with the variable speed. During the 
experiment the resonance strength could be changed by a 

single skew-sextupole magnet while the nonlinear 
detuning was controlled by a number of the octupole 
lenses. Different parameters such as particles loss rate, 
beam size and transverse distribution, space phase 
trajectories, amplitude dependent tune shift, etc. were 
measured. 

MEASUREMENT SETUP 
The VEPP-4M electron-positron collider with the 

maximum energy of 5.5 GeV is operating now at ~1.8 
GeV in the region of the ψ-meson family. The collider is 
equipped with a number of beam diagnostics, which allow 
the measurement of different parameters and the study of 
nonlinear motion. The phase space trajectories are 
registered by the excitation of the coherent beam motion 
with the help of the fast electromagnet kicker with 50 ns 
30 kV pulse. To measure the beam centroid motion, 
BPMs in the turn-by turn mode are used. The BPM 
resolution is ~50 μm. 

Particles loss and the beam distribution tails are 
measured by a set of scintillator counters inserted into the 
vacuum chamber. The counter can be moved by a step-
motor in and out of the beam with the accuracy better 
than 0.1 mm. All measurements were performed  at the 
low electron current of ~0.5 mA to avoid coherent effects. 
The chromaticity was set to ~+0.5÷+1 for both planes 
unless the synchrobetatron resonances are observed. We 
changed the vetical betatron tune by varying the 
quadrupole current. The minimal rate provided by the 
quadrupole power supply is 01.0=Δ zν at 40 ms.  

To measure a single-turn transverse beam distribution 
during tens of thousands of turns we have developed a 
unique device [4] based on the multi-anode 
photomultiplier R5900U-00-L16 HAMAMATSU. This 
device is capable of recording a transversal profile of a 
beam at 16 points at one turn during 217 turns of a beam. 
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Figure 1: Optical layout of the diagnostics. The lens sets 
up a beam image on the photocathode of the MAPMT. 
The radial profile measurement is shown. 
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The optical arrangement (Fig.1) allows us to change the 
beam image magnification on the cathode of MAPMT 
from 6× to 20×, which is determined by the experimental 
demands. The set of remote controlled grey filters, 
included into optical diagnostics, allows selecting a 
suitable level of the light intensity with the dynamic range 
of about 103. 

 
 
Figure 2: The vertical beam profile vs. revolution number 
(left plot). Colors indicate the beam intensity. Single shot 
vertical beam profile fitted by the Gauss function (right 
plot). 

The example of the vertical beam profile measurement 
as a function of the turn number during the resonance 
crossing with the maximum speed and the nonlinear 
detuning close to zero is shown in Fig.2, left. A cross-
section of the plot along the line A is depicted in Fig.2, 
right. 

NONLINEAR DETUNING 
As it is known, the phase space topology of the third-

order resonance depends on the nonlinearity, which in the 
second order of approximation has the form 

22
zxzxxxx ACAC +=Δν     and   22

zzzxzxz ACAC +=Δν . 

In VEPP-4M two families of the octupole magnets 
SEOQ and NEOQ with the maximum current ±25 A, 
placed symmetrically to the IP at the azimuth 
with xz ββ >> , can control the tune-amplitude dependence 
coefficients. 

The experimental results of the vertical tune 
measurement as a function of the vertical kick amplitude 
for different polarity of the octupole current are depicted 
in Fig.3 

 
 
Figure 3: Vertical tune vs. amplitude for different currents 
in the octupoles. Polarity changing gives the tune shift 
term change from 3101 −×=zzC mm-2 to 3105.0 −×−=zzC  
mm-2. 

The values of the tune-amplitude dependence terms as 
a function of the octupole current are listed in Table 1. 

Table 1: Tune-amplitude dependence coefficients (O is 
the octupoles current) 

104⋅Сnm (mm2) О = 0 А –25 А +25 А 
Сxx 1.6 4.4 –0.4 
Сxz 0 –6.6 2.2 
Сzx 0 –11.6 6.6 
Сzz 0 11 –5.6 

 
With the octupoles switched off, the vertical nonlinear 

term Сzz is equal to zero, the resonance trajectories 
outside the central area are unbound (Fig.10) and for the 
exact resonance condition the motion of all the particles is 
unstable. One can expect that the passing of such 
resonance causes beam intensity loss with the rate 
depending on the passing speed. Below, we refer this case 
as the crossing with low nonlinear detuning. 

On the contrary, for –25 A excitation current, the term 
Сzz  is maximal and three stable islands appear outside the 
central resonance region (Fig.4). This case corresponds 
(depending on the crossing rate) to the particles trapping 
inside the islands and to the transporting outward the 
beam axis. This case is referred below as the resonance 
crossing with high nonlinear detuning. 

RESONANCE DRIVING TERM 
Several approaches were applied to determine the 

resonance driving term. A turn-by-turn measurement of 
the phase space trajectories for different kick amplitude 
(Fig.11) allows the estimation of the resonance driving 
term from the following considerations. For the resonance 

nz =ν3  , a perturbated term of the Hamiltonian 

( ) ( )∑ −=
n

znz nAJH θϕ3cos2 3
2/3

1
, 

where nA3 are the relevant Fourier harmonics of the 
sextupole perturbation, allows  us to obtain the second-
order invariant  
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which gives the following estimation of the main 
perturbation harmonic from the measured curve )( zzJ ϕ  

2/3
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2/3
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minmax
3 JJ

JJa n +
−≈ . 

In our case the estimation of the resonance driving 
term from the experimental data gives the value of A3,2 = 
0.03÷0.07 mm-1/2 depending on the operation mode and 
lattice tuning. Other approaches, such as the dynamic 
aperture measurement either from the beam life time in 
the vicinity of the resonance or as the maximum kick 
amplitude, give consistent values of the main resonance 
harmonic amplitude. 

RESONANCE CROSSING WITH HIGH 
NONLINEAR DETUNING 

A standard isolated resonance Hamiltonian in the 
action-angle variable has the following form 
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ϕαθδ mIAIIH n
n cos)( 2/2

0 ⋅+⋅+⋅= ,            (1) 
with the nonlinear tune shift coefficient zzzC βα /0 = , the 
driving term strength An and the distance from the 
resonance )(θδ  that varies with time θ. A sketch of the 
phase space portrait corresponding to the Hamiltonian (1) 
is plotted in Fig.4. 

 
−2.66×10-3 δ(θ) = 0 3.4×10-4 

Figure 4: Phase trajectories evolution during the stable 
resonance crossing. 

 
For relevant tune-amplitude dependence, three stable 

resonance islands are created at the phase space plot when 
the betatron tune crosses the resonance value (Fig.4). The 
sign of nonlinearity should correlate with the tune 
variation direction: for the positive nonlinearity the tune 
should be decreased to generate the islands at the exact 
resonant value. 

The turn-by-turn measurement also allows obtaining 
similar trajectories (Fig.5). 

 

 
Figure 5: Measured trajectories inside the resonance 
island. 
 

An adiabatic condition of the particles capturing into 
the resonance island in the case of the third-order 
resonance has the form [5] 

3/1

306 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅

′
>

A
I a α

ν , 

where θνν dd /=′  is the resonance crossing rate and Ia is 
the captured particle amplitude. According to this 
criterion, the fraction of the trapped particles grows with 
the increasing of the nonlinear detuning 0α  and the 
decreasing of the crossing rate. Estimation for VEPP-4M 
shows that for the maximum nonlinearity (the octupole 
current is –25 A) and the resonant term A3 ~ 0.05 mm-1/2, 
the resonance crossing rate to trap noticeable fraction of 
the particles should be in the range of 0.1-1 s. 

The evolution of the vertical beam profile during the 
crossing of the resonance 233 =zν  with high nonlinearity 

is shown in Figs.6-8. In Fig.8 the island formation and the 
particles capture and transportation to the high amplitudes 
are clearly seen. 

 

 
Figure 6: Tune range is Qz = 0.6608÷0.6717; crossing 
time is 40 ms. For high rate neither beam size change nor 
particles capture is seen. 
 

 
Figure 7: The same as in Fig.5 but the crossing time is 0.3 
s. A beam blow-up and some evidence of the particles 
trapping are observed. 
 

 

Figure 8: Time evolution of the vertical beam profile in 
the case of the particle trapping in the resonance island 
( 3=Δt s). 
 

Transverse cross-sections of the evolution plot in Fig.8 
in different moments of the resonance passage are given 
in Fig.9. 
 

 
 

 
Figure 9: Transverse distribution of the beam profile 
(Gauss fit of the MAPMT 16 channels) corresponding to 
the different moments indicated by the red lines in Fig.8. 
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RESONANCE CROSSING WITH LOW 
NONLINEAR DETUNING 

If in Hamiltonian (1) one takes 00 == zzCα , the island 
structure does not appear during the resonance crossing. 
The phase trajectories corresponding to this case are 
shown in Fig.10 (computer simulation) and Fig.11 (turn-
by-turn observation). 

 
−2.66×10-3 δ(θ) = 0 3.34×10-3 

Figure 10: Phase space portrait for the crossing of the 
unstable third-order resonance. 
 

 
Figure 11: Measured phase trajectories close to the third-
order resonance. 
 

As there are no stable trajectories exactly on the 
resonance, one can expect loss of the beam intensity 
instead of the particles trapping in the islands. The value 
and the rate of the loss depend of the resonance passing 
speed. If the speed is high enough, not all the particles 
from the beam are lost; some of them can be captured 
back to the central resonance area.  

The adiabatic criterion in this case can be formulated 
as follows. All the particles will be lost from the beam 
during the unstable resonance crossing if the crossing rate 

θνν dd /=′  satisfies the relation [6] 
πεν 8/2

3 zA ⋅<<′ , 
where εz is the beam emittance. 

A typical particles loss profile during the unstable 
resonance crossing is shown in Fig.12. One can see that 
the signal of the loss rate measured by the vertical 
scintillator probe in the vacuum chamber has highly 
irregular spiky profile, which can be explained by the 
ripple and instabilities of the magnet power supplies. 

The theory in [6] allows defining the particles loss rate 
curve. The analytic expressions were applied to the 
measurement results and the comparison is presented in 
Fig.13 and Fig.14. One can see that the theory predicts the 
sharp edge of the loss rate curve depending on the 

resonance crossing direction (with the tune increase or 
decrease). 

 
 

Figure 12: Total intensity decrease (upper plot) and 
particles loss rate (lower plot) during the resonance 
crossing. Tune change 0.6687→0.6653 for 1 s, I = 0.212 
→ 0.214 
 

 And, indeed, the same behaviour is observed in the 
experimental results in Fig.13-14.  However, despite the 
relative loss rate profiles found theoretically and 
experimentally are rather consistent, the absolute value of 
the intensity loss is differs much.  
 

 
Figure 13: The vertical betatron tune change Δνz = 
0.6653→ 0.6685 for 1 s, I = 0.183→0.181 

 
Figure 14: Tune shift if 0.6687→0.6653 for 1 s, I = 
0.212→0.214 
 

Now we are trying to explain it either by the radiation 
damping or the residue nonlinearity. 
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SYNCHROBETATRON RESONANCES 
OBSERVATION 

All previous measurements were performed with the 
chromaticity compensated to +0.5…+1. The following 
studies concern the VEPP-4M lattice with a rather high 
vertical chromaticity that was controlled by the sextupole 
magnets. The particles loss was observed to explore the 
influence of the synchrobetatron satellites. 

In Fig.15 the particles loss rate with the vertical 
chromaticity increased to 9.5 is shown. The distance 
between the main resonance and the satellites just 
corresponds to the synchrotron tune of 0.005. All the 
beam intensity was lost during the passing of the third-
order resonance with two satellites.  

 
Figure 15: Δνz = 0.02 for 10 s, I = 0.120 → 0, ξx = 0.5, ξ z 
= 9.5 
 

Further increasing of the vertical chromaticity 
generates growing of the synchrobetatron satellites 
number. In Fig.16 one can see two satellites around the 
main resonance line.  

 
Figure 16: The same as for Fig.15 but with the vertical 
chromaticity increased to 15.5. 

   CONCLUSIONS 
   The beam dynamics during the vertical betatron third-
order resonance was studied experimentally. Two specific 
cases were separately explored.  

The first case relates to the rather high value of the 
vertical tune-amplitude dependence. It was shown that 
with the adiabatic crossing rate, the resonance islands can 
capture some fraction of particles and transport them to 
the high amplitudes. The trapping capability can be 
controlled by the octupole magnets. This fact can be 
useful to provide high performance of the damping rings: 
the nonlinear detuning coefficients should be adjusted 

during the damping to prevent particles captures in the 
nonlinear resonances. 

Another case relates to the low value of the amplitude-
dependent tune shift. In this case no resonance islands 
appear and significant portion of the beam intensity can 
be lost during the resonance passage. This case is 
sensitive to the beam damping and the residue 
nonlinearity as well as to the ripple of the power supply 
system. 

Additionally, the crossing of the synchrobetatron 
resonances was studied experimentally. It was shown that 
the particles loss increased at the satellite resonances. 
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