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Abstract 

NSLS-II is a new ultra-bright 3-GeV 3rd-generation 
synchrotron-radiation light source. The performance goals 
require operation with a beam current of 500mA and a 
bunch current of at least 0.5mA with tight photon-beam 
position and timing specifications, which constrain rf sys-
tem stability (0.15 degrees bunch jitter).  This study de-
velops computational methods for the construction of 
LQG controllers for discrete-time models of single-cavity 
rf systems coupled to short-bunch beams able to meet this 
tolerance. It uses Matlab’s control-systems toolbox (CST) 
and Simulink to:  1) synthesize the LQG controller; 2) 
establish resolutions of state variables, ADCs, DACs, and 
matrix coefficients; 3) simulate closed-loop performance 
with floating- and fixed-point controllers controlling lin-
ear, non-linear, and Vlasov-simulation-derived linear 
models; and assess sensitivity to variations of the model. 
This machinery is applied to NSLS-II and other rings 
showing exceptional noise suppression and bandwidth. 
Thoughts are given on the validation and tuning of the rf-
system model by machine measurements, and on DSP 
implementations. 

INTRODUCTION 
As with any late-generation synchrotron light source, 

NSLS-II users require very stable beams.  The rf system 
[1] in particular has tight noise tolerances [2], which will 
be difficult to meet.  The most immediate problem is 
noise from the high-power rf amplifiers.  Although phase 
feedback around the amplifiers is a way to suppress phase 
noise, which is particularly prevalent in klystrons, before 
it becomes more deeply entrenched in the rest of the rf 
system, amplitude noise would remain.  Amplifier satura-
tion is an issue that complicates any solution to this prob-
lem [3].  

This study explores the use of state-space models and 
linear-quadratic-Gaussian (LQG) controllers to suppress 
amplifier noise. Although Kalman estimators and LQG 
regulators [4] are widely used in other areas, I am not 
aware of their successful use in rf systems.  Boussard and 
Onillon have [5], however, numerically considered their 
use for minimizing transients at injection. 

NSLS-II is to use top-off operation, i.e., injection at full 
energy, which has the advantage that the operating point 
of the rf system is nearly constant.  This greatly simplifies 
the problem of engineering a controller that requires a 
detailed model of the underlying dynamics of the system 
being controlled (the plant).  LQG controllers minimize in 

a least-squares sense the deviation of critical internals of 
the plant plus a measure of the cost of controlling the 
plant via its inputs, while being driven by the noise 
sources.  It is this formalism applied to the problem of 
amplifier noise in an rf system controlling a short-bunch 
beam that is the subject of this paper [6].  The question 
whether an LQG regulator synthesized from a rigid-bunch 
model of an rf system is actually going to work is not an-
swered definitively here through tests in a real machine, 
or even with simulations using real response data.  But 
these controllers were successfully tested numerically 
with linear and non-linear Simulink [7] models, and with 
independent linear models incorporating mode coupling 
derived from Vlasov simulations [8]. 

The rest of this paper describes the rf-system model in 
Simulink, its linearization into a Matlab LTI object, the 
steps involved in the construction of a floating-point LQG 
controller, construction of a fixed-point controller, model 
tuning and validation by machine measurements and Vla-
sov response functions, some elements of upper- and 
middle-level architecture of the fixed-point controller, the 
application of these ideas to NSLS-II and other light 
sources, and the impact of klystron saturation [3]. 

RF SYSTEM MODEL 
Timing experiments demand the most stringent toler-

ances of beam phase and energy noise [2].  These experi-
ments also require short bunches, which, having minimal 
mode coupling, are the simplest to model.  These non-
linear discrete-time models are constructed in Simulink 
using blocks that model physical parts of the rf system, 
e.g., rf mode(s), bunch(es), a klystron, etc. [9]. Using 
Matlab CST functions, these models are then linearized 
and converted to state-space linear-time-independent 
(LTI) Matlab objects.  The most basic rf-system model 
requires six state variables to represent its dynamics.   

Remember that the discrete-time equations imple-
mented by a state-space model are 

nnnn

nnnn
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where x, y, u, and w represent vectors of state variables, 
outputs, control inputs, and noise inputs, respectively.  
The matrices for the rf-system model are computed during 
linearization from the Simulink model.  In this paper, the 
matrix A is termed the kernel.   

It is important during construction of the model to in-
corporate delays as they are present in the machine being 
modeled, in the model.  Without these delays, poor fits to 
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machine or Vlasov response data inevitably occur.  One 
must further include the controller processing delay in the 
model using the ‘inputdelay’ property of the LTI object.  

The amplifier noise model is part of the rf-system 
model.  It informs the model of the magnitude and fre-
quency dependence of the amplifier noise.  Amplifier de-
lay is added to the model as a one-or-more-time-step de-
lay within the amplifier model. All delays contribute to 
the model’s state-variable count. 

RF feedback may be part of the plant model as needed. 
In machines with super-conducting cavities, a small 
amount (open-loop gain ~ 1) is necessary for control of 
the reactive Robinson instability.   But this feedback is 
better included as a function within the controller so that 
the controller’s independent I and Q gains can properly 
manage amplifier gain compression [3].  This approach is 
feasible because this feedback requires little bandwidth.   

Inputs to the model are the I and Q rf inputs.  Outputs 
are beam energy and phase, rf cavity I and Q components, 
and transmission-line forward and reflected wave I and Q 
components.  So the plant model has two inputs, eight 
outputs, and 16 linear response functions.  Not all outputs 
are used for feedback. 

FLOATING-POINT CONTROLLER 
The steady-state Kalman estimator and LQG controller 

are constructed using functions of the CST in a straight-
forward manner.  An input-noise covariance matrix is 
specified from the amplifier noise model, and the quad-
ratic cost function xQx* ⋅⋅  defined by Q comes from 
machine specifications [2].   

An LQG controller constructed from a given subset of 
plant outputs is not necessarily stable.  The use of an un-
stable controller may complicate development and opera-
tion of the system even though it may provide the best 
noise suppression.  For this reason, of the eight plant out-
puts, the particular subset used for feedback is chosen for 
stability of the controller.  Later experience with a work-
ing system may make this choice unnecessary. 

The controller state variables x̂  may be transformed by 
xSxx ˆˆˆ ⋅=′→ , where S is a non-singular matrix, without 

changing the external behavior of the controller, implying 
unique transformation rules for the matrices A, B, C, and 
D.  A transformation of this form is here termed a kernel 
transformation.  We introduce a particular kernel trans-
formation as a means to simplify the matrix computation 

xA ˆ⋅  anticipating the synthesis of fixed-point controllers 
in the next section.  In principle, the matrix can be diago-
nalized, with a complex-valued diagonal.  But because a 
complex-valued A is not directly useful in a digital con-
troller, A is instead converted to block diagonal form with 
at most 2-by-2 blocks with real coefficients, this done 
conveniently with the Matlab’s ‘cdf2rdf’ function.  This 
block-diagonal form, with correspondingly transformed B, 
C, and D, is what is later instantiated in logic.   

With the floating-point controller designed, two (Simu-
link) copies of the controller, one controlling the non-
linear Simulink model of the rf system and the second 

controller controlling the linearized model, are simulated 
side-by-side in another Simulink model. The closed-loop 
beam-noise performances are checked against each other 
and against noise calculated by Matlab’s function ‘covar’. 

Performance of the closed-loop system shows that, 
given the noise model used and what we believe to be 
realistic delays, noise is reduced by nearly about an order 
of magnitude below the target and with bandwidths of a 
few tens of kilohertz in NSLS-II.  Because machine re-
sponse data are not yet available, a further test controlling 
LTI models built from response functions calculated 
through Vlasov simulations were performed – success-
fully. 

Numerical experiments to assess sensitivity of closed-
loop operation to variations of model parameters were 
also performed.  First, the amplifier operating point along 
the saturation curve was varied with the result that the 
operating point could be moved down the curve over a 
wide range without instability or serious degradation of 
performance.  When moving up the curve toward satura-
tion, at some point the system becomes unstable, as is 
inevitable.  Second, the system showed little sensitivity to 
I/Q rotational misalignment of the rf input.   

FIXED-POINT CONTROLLER 
The point of fixed-point controller synthesis is to design 

a controller that is efficiently implemented in logic and 
whose performance rivals that of the floating-point con-
troller.  Towards this end, one needs to determine bit 
widths for the state-variables x, inputs u, and outputs y; bit 
widths of the A, B, C, and D matrix coefficients; and at 
summation points, determine accumulator bit widths suf-
ficient to eliminate quantization noise in the truncated 
sums. 

We begin with the kernel.  Since kernel transformations 
acting on the controller have no effect on the external 
behavior of the controller, we can use them to scale the 
controller state variables so that unit noise added to each 
state variable (while closed loop) is at the margin of sig-
nificance.  This is done in code by adding an additive in-
put to the xA ⋅  summation point one controller state vari-
able at a time, applying a unit noise to that input, then 
scaling that state variable so that the cost function 

xQx* ⋅⋅  of the plant is one. (This process needs to be 
iterated to convergence.) Matlab’s function ‘covar’ is 
used.  One then quantizes the state variables at those lev-
els (one).  The largest signal to be represented by each 
state variable sets the number of bits needed for that vari-
able, which is not determined by this procedure.   

Simulations are used to determine the variation of noise 
levels with ADC, DAC, and matrix element resolutions.  
During these simulations, amplifier noise drives the 
closed-loop system and noise is read out at the output of 
the plant.  Resolutions are increased a bit at a time until 
noise levels (or the cost function) converge to the float-
ing-point controller levels.   Results including sign bit for 
an NSLS-II model are as follows: ADC – 11 bits; DAC – 
7 bits; A – 12 bits; B – 9 bits; and C – 6 bits.  As a further 

Proceedings of PAC09, Vancouver, BC, Canada WE5PFP068

Radio Frequency Systems

T25 - Low Level RF 2163



condition, the finite resolution of the kernel must also not 
affect its eigenvalues significantly. 

Where there are sums of multiple terms, there are fur-
ther conditions on the resolutions of the accumulators due 
to the accumulation of quantization noise.  Quantization 
noise from one term has a flat distribution with variance 

12/12
0 =σ  in units of the resolution of the term.  With n 

such terms added together, the noise quickly becomes 
normal with variance given by the central limit theorem: 

2
0

2 σσ n= .  Additional bits added to the low end of the 
accumulator as shown in Fig. 1 reduce 0σ  accordingly.  
The result is that, depending on the number of terms, only 
two or three bits are needed to make the quantization 
noise of the result, in terms of effective number of bits, 
vanishingly small. 

 
Figure 1:  Bit depths along the path of a row of a ma-
trix product.  Noise refers to quantization noise. 

IMPLEMENTATION IN LOGIC 
Since the bit depths are modest, there is economy of the 

quantity of logic required to implement the LQG control-
ler.  Tests using logic synthesized by Altera Quartus II 
showed that these multipliers typically required 100-250 
logic elements on an Excalibur demo-board target, each 
logic element housing a single flip-flop.  Given the den-
sity of logic on modern chips, the LQG controller will 
easily fit on a chip (Fig. 2).   

Accurate response-function measurements are an inte-
gral part of the setup and operation of LQG controllers.  It 
is envisioned that logic for these measurements be placed 
on the chip and activated periodically during dedicated 
beam time for update of the logic.  Measured response 
functions are required for each plant output that is used 
for feedback, and for the two modulation outputs to the 
I/Q modulator - one set of measurements for I and Q 
modulation types.  Raw data are downloaded to a supervi-
sory computer, processed for the machine’s response 
functions, the measured response functions fit to the rigid-
bunch model by varying two (I and Q) rf feedback pa-
rameters and a gain-compression parameter, the fixed-
point controller synthesized, logic generated, and the logic 
uploaded to the controller board [10].  This LQG logic 
will coexist with other controller logic in a field-
programmable gate array (FPGA).  

The thought is to have the LQG controller operate in 
parallel with a conventional proportional-integral (PI) 
controller.  Control is switched to the LQG controller for 

user data acquisition, and switched back for injection, top-
off, and when any kind of fault appears. 

 

 
Figure 2:  LQG controller numerical logic for three 
inputs and two outputs. 

SUMMARY 
Models of single-cavity rigid-bunch rf systems were 

developed to address the tight beam-noise requirements of 
timing and other experiments at NSLS-II.  Numerical 
simulations of LQG controllers built from these models 
were found to realize a great deal of gain and bandwidth 
and show a corresponding degree of noise suppression of 
amplifier noise compared to simpler proportional-integral 
controllers.  These LQG controllers do not show a pro-
hibitive degree of sensitivity to variation of parameters of 
the model.  These results are encouraging in that they 
provide evidence that robust and effective controllers for 
rf systems in top-off operation can be constructed.  A 
number of tools for construction and testing of these con-
trollers are also demonstrated.  Fixed-point controllers 
built from these tools seem to work well and are realiz-
able in modest FPGAs.  A full response-function-
measurement apparatus and logic for measurement of 
amplifier gain compression can coexist with controller 
logic and be activated as needed.  Further work is needed 
to better characterize amplifier noise, fine-tune LTI mod-
els with real machine response data, and to fill in many 
details of how these controllers are to be meshed with the 
larger rf control system. 
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