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Abstract 

Beam-beam tune shift parameter characterizes the 
strength of the nonlinear interaction due to the beam-
beam collision. The tune shift has been measured in many 
e+e- colliders and has been an indicator for the collider 
performance. The record for the tune shift is known as 
0.07-0.1 depending on the parameter of the collider, 
especially the radiation damping rate. We discuss the 
fundamental limit of the tune shift can be very high (>0.2) 
depending on the choice of collider parameter, which 
concerns operating point near the half integer tune, head-
on collision and travel focus. 

INTRODUCTION 
Various collision schemes are proposed for high 

luminosity B factories. In recent colliders, multi-bunch 
collision is crucial to get gain the multiplicity of the 
number of bunches. The crossing angle is introduced to 
avoid parasitic encounters.  

An essential of crossing angle is expressed by 
transformations as shown in Figure 1. The electro-
magnetic field is formed perpendicular to the traveling 
direction. The transformation which particles in the beam 
experience is expressed by [1,2] 

Δpx = −Fx (x + 2sφ,y)  
Δpy = −Fy (x + 2sφ, y)                   (1) 
Δδ = −φFx (x + 2sφ,y)   

where s=(z-zc)/2 and f is the half crossing angle. The 
transformation is separated by three parts. 

                                                (2) 
 

where Hbb is Hamiltonian for the beam-beam interaction. 
The first transformation is given by 

e−φ :px z:x = x − φ[pxz,x] = x + φz  
e−φ :px z:δ = δ − φ[pxz,δ] = δ − φpx             (3) 

The residual of the first and third transformations gives 
the transformation for δ in Eq.(1). This expression, which 
is called Lie operator expression, is presented in [3]. Note 
the operator order;   o  denotes the multiplication of 
transformations, which is inverse order of Lie operator 
multiplication. 

Both beams are transferred by the same transformation. 
The term φzc appears from 2sφ in Eq.(1). This 
transformation is actually equivalent to the appearance of 
z dependent dispersion (zx) at the collision point: i.e., the 
revolution matrix including the crossing transformation is 
expressed by  

  M = eφpx z oM0 oe−φpx z                  (4) 

where M0 is the revolution matrix of the lattice. Now the 
beam envelope matrix has a finite element of  
<xz>= ζxσz= φσz [4], for the weak limit of the beam-beam 
interaction. The collision is now regarded as head-on 
collision with tilt beams in x-z plane as shown in Figure 2. 
Electro-magnetic field is the perpendicular to the moving 
direction now. 

CRAB CROSSING AND TRAVEL 
FOCUSING 

The crab crossing [1,6] is basically meaningful for 
the short bunch scheme. A transformation, which is 
equivalent to the crossing angle, is applied before and 
after the collision, 

 e−φpxz oeφpx z oe−:Hbb : oe−φpxz oeφpxz = e−:Hbb :,  (5) 
thus the effective transformation is the same as that for 
the head-on collision. To realize the transformation, crab 
cavities, which gives the transformation, e−V ':xz:/ E0 , are 
placed at locations where linear transformation TA is 
satisfied to, 

 e
φpx z = TA oe−V ':xz:/ E0 oTA

−1 = e−(V ' / E ):T oxz:,           (6) 
where 

 
TA ox = βx

*

βx,c

x cosϕx + βx
*βx,c px sinϕx

      (7)
 

ϕx is the horizontal betatron phase difference between the 
collision point and crab cavity position, and βx* and βx,c 
are horizontal beta functions at the collision point and 
crab cavity position. 

The well-known formula for crab angle and voltage is 
given by choosing the betatron phase difference of p/2. 

φ = ωcrabV
cE0

βx,cβx
*

                          (8)
 

Only one crab cavity can be possible to realize the 
transformation  

 e
φpx z oM0 oe−φpx z = TB oe−V ':xz:/ E0 oTB

−1 oM0    (9) 
Basically this procedure is really 6x6 optics matching for 
the dispersion zx. 

Beam particles with z collide with the center of 
another beam at s=z/2 in the travel focus scheme [8]. The 
particles with z should have the waist position at s=z/2 to 
minimize the beam-beam effect. The transformation exp(-
py

2z/4) realizes the travel focusing: 

 ezpy
2 4 oe−:Hbb : oe−zpy

2 4                (16) 
RF focusing is used for the transformation. However 
heavy development works are necessary for the RF 

  eφpx z oe−:Hbb : oe−φpx z

WE6PFP045 Proceedings of PAC09, Vancouver, BC, Canada

2592

Circular Colliders

A02 - Lepton Colliders



device. We know the crab cavity exchanges x and z.  

  e−φpxz oexpy
2 4φ oeφpxz oe−:Hbb : oe−φpxz oe−xpy

2 4φ oeφpxz
                         

  = e(x−φz )py
2 4φ oe−:Hbb : oe−(x−φz )py

2 4φ
     (17) 

The first and last operator exp(+-φpxz) at the first line of 
Eq.(17) are actions of the crab cavities, while 3rd and 5th 
are the crossing angle. The 2nd and 6th operators are from 
two sextupole magnets located at the both sides of the 
collision point. Additional two sextupole magnets in both 
sides are added to cancel the residual nonlinear term [9]. 

  expy
2 4φ oe−(x−φz )py

2 4φ oe−:Hbb : oe−(x−φz )py
2 4φ oexpy

2 4φ  

  = ezpy
2 4 oe−:Hbb : oe−zpy

2 4
               (18) 

Realistic arrangement of IR is given by chosen betatron 
phase so as to realize the transformation as is done in Eq. 
(7). Two pairs of crab cavities, which are inserted 
between two sextupole magnets, are located at the 
horizontal betatron phase difference of (1/2+n)π. The 
sextupole magnets are located at the vertical betatron 
phase difference of (1/2+n)π. The phase difference of two 
sextupole magnets is π or 2π depending on the sign of 
magnets. In this scheme two crab cavities are necessary. 

In the travel focus scheme, the waist position shifts for 
z but does not for s: that is, particles at z have waist 
position for the variation of s, and the waist position is 
located at the centre (z=0) of the colliding beam. The 
hourglass effect is not avoidable even in the travel waist 
scheme. 
The beam-beam interaction is expressed by 

  
x±(+0) = S exp − : V0

−1(si)ϕ(xm,si)V0(si)dsi :
−IR

IR∫[ ]x±(−0)  (19) 

where si, which is , is a function of the longitudinal 
position (z) of the particle, si(z)=(z-zi)/2. V0 is the 
transformation for drift or solenoid,  

V0(s) = Sexp − :
px

2 + py
2

2
dsi :

0

s∫
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥                 (20) 

Note the upper bound of the integration is a function of z 
now.  

  
  
e−:py

2z:Sexp − : V0
−1(si)ϕ(xm,si)V0(si)dsi :

−IR

IR∫[ ]e:py
2z: 

  
≈ Sexp − : V0

−1(zi /2)ϕ(xm,zi /2)V0(zi /2)dsi :
−IR

IR∫[ ]   (21) 

The transformation does not include z. The degree of 
freedom for the beam-beam interaction is reduced to two 
from three. 

BEAM-BEAM INTERACTION FOR FLAT 
BEAM 

  For flat beam, the horizontal beam-beam force does not 
depend on y, but the vertical force strongly depends on x 
as shown in Figure 1. The horizontal motion can be 
regarded as one-dimensional motion. Since the horizontal 
force is time dependent: i.e., two degree of freedom, the 
horizontal motion cannot be solved. When the horizontal 
tune is very closed to an integer or a half integer, the 
horizontal motion is near solvable: that is, the 

transformation of the horizontal coordinates is expressed 
by 

xn +1 = 1− μx
2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ xn + βxμx px,n

 

px,n +1 = −μx xn + 1− μx
2

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ px,n − Fx (xn +1, yn +1)      (22) 

Fx (x,y) ≈ Fx (x,0)(1+ y 2 σ xσ y ) 
where μx=2π(νx-0.5), xn=(-1)nx(s=nL). The horizontal 
motion is equivalent to that in potential 

U(x) ≈ 1
μx

Fx (x',0)dx '
a

x∫                  (23) 

The potential increase for a large μx, the horizontal 
motion is near solvable as shown in Figure 2. 

 
Figure 1: The beam-beam force for a flat beam with 
aspect ratio of 0.01. 
 

 
Figure 2: The Horizontal phase space plot (x-px) for νx 
=0.505 and 0.52, where vertical oscillation amplitude is 
y=2σx and νy=0.58.  
 
The vertical transformation is expressed by 
      yn +1 = cosμy yn + βy sinμy px,n  

py,n +1 = − 1
βy

sinμy yn + cosμy py,n − Fy (xn +1,yn +1)   (24) 

The beam particles experience vertical beam-beam force 
with the modulation due to the horizontal motion, which 
is regarded as an external function. The horizontal motion 
is stochastic for operating point far from half integer tune. 
The vertical force is  

Fy (x + xr, y) = Fy (x , y) + 1
2

∂ 2Fy

∂x 2
x= x 

xr
2 + ...     (25) 

where xr is the stochastic term in the horizontal motion. 
The stochastic term gives vertical diffusion. Figure 3 
shows the phase space plot in y- py–x space for νx =0.505 
and 0.52. The phase space trajectories show near solvable 
and unsolvable νx =0.505 and 0.52, respectively. 
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Figure 3: Horizontal amplitude (x) on y-py phase space 
for νx =0.505 and 0.52. 
 
These characteristics reflect the beam-beam limit. Figure 
4 shows the beam-beam parameter given by weak-strong 
(BBWS) and strong-strong (BBSS) simulations. The 
beam-beam parameter is calculated by the simulated 
luminosity with the formula, 

ξy,± =
2reβyLb

N±γ± f rev

 .                       (26) 

 

 
Figure 4: Beam-beam parameter given by weak-strong 
(BBWS) and strong-strong (BBSS) simulations. 
 
      A design candidate of Super KEKB is based on this 
high current and high beam-beam parameter scheme. 
There are many limitations for the design of Super 
KEKB. The coherent synchrotron radiation (CSR) limits 
the bunch length, especially in LER. Therefore we adopt 
negative momentum compaction to minimize the bunch 
lengthening and choose the bunch length of 5 mm and 3 
mm for LER and HER, respectively. 

    Figure 5 shows the luminosity evolution for Super 
KEKB in the high current option calculated by the strong-
strong simulation. The transverse damping time is 4000-
6000 turns. The simulation predicted the luminosity 
5.3x1035 cm-2s-1.  
 

 
Figure 5: Luminosity evolution for Super KEKB in the 
high current option. 

CONCLUSIONS 
Table 1 shows the beam-beam parameter given by 
Eq.(26) in several colliders. There are no colliders to 
reach such high beam-beam parameter. The simulations 
show the beam-beam parameter is possible if machine is 
perfect. Do you believe it? How high is possible in our 
technique? 
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Table 1: Beam-beam parameter for several colliders in the world (except LEP). 

     * The tune shift enhancement due to the hourglass effect is not included. 
 KEKB(‘06) 

No crab 
KEKB 

Crab cav 
PEP-II DAFNE 

Crab waist 
BEPC-II 

(Apr.09) 
VEP2000 

(2008) 
CESR 

 
L(cm-2s-1) 1.76x1034 1.93x1034 1.21x1034 4.5x1032 2.3x1032 1x1031 1.25x1033 

I+/- (A) 1.65/1.4 1.60/1.10 2.90/1.88 1.10/1.43 0.65/0.70 0.04 0.35 

Nbunch 11 1584 1722 107 90 1 45 

βy (mm) 5.9 5.9 10 9.3 1.5 50 18 

τy/Τ0 4000 4000 6000 110000 32000 - 9000 

Min(ξy+/-) 0.0434 0.0598 0.033 0.0266 0.012 0.0565 0.0561 

 

WE6PFP045 Proceedings of PAC09, Vancouver, BC, Canada

2594

Circular Colliders

A02 - Lepton Colliders


