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Achieved RHIC Parameters

mOde no. Of IOﬂS/bUﬂCh /8* DO| Lstore avg. A]_AQ,Cstore avdg. AlAQﬁpeak

bunches [107] [m] %  [cm—2sec™!] [cm—2sec™1] [cm—2sec™1]
Au-Au 103 1.1 0.8 121026 46 - 1030 120 -103°
Cu-Cu 37 4.5 0.9 80 -102° 32.1030 79-1030
d-Au 103 100/1.0 0.85 13-10%8 51-10%° 99 .10%°
p-p 111 1.35 1.0 60 201030 201030 35.1030
100 GeV

Nucleon-pair luminosity A1 A>L treats nucleons of nuclei independently

and allows for comparison of luminosities of different species



New Developments I: p-p at 250 GeV
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Two full Siberian snakes to overcome ~ 1000 depolarizing resonances
in RHIC
Two partial Siberian snakes in AGS



Intrinsic spin resonances up to 250 GeV
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Beyond 100 GeV, resonances are two times stronger then below 100 GeV

Image courtesy of Mei Bai



Store polarization vs. injected polarization
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Average polarization at store (without rotators) is 42 %, after 50 % at
injection

Image courtesy of Mei Bai



New Developments II: Low-energy Au-Au
Search for critical point of nuclear phase transition

Energy scan between 2.5 GeV/n and 25 GeV/n

Two different beam energies tested so far, 4.6 GeV/n and 2.5 GeV/n.

Different harmonic numbers due to limited tunability of RHIC RF:
h = 366 at 4.6 GeV/n, h = 387 at 2.5 GeV/n.

Defocusing sextupoles at opposite polarity to compensate dipole
b>.

Low-energy physics run planned for 2010.



Beam lifetimes at 4.6 GeV/n
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2008 blue beam lifetime: 3.5 min (fast), 50 min (slow)
High luminosity with electron cooling of low energy Au beams in RHIC
in the future

Image courtesy of Todd Satogata



Beam activity at 2.5 GeV/n

lifetime: 1 minute/10 minutes
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Image courtesy of Todd Satogata



Intensity Limitation I. Dynamic Pressure Rise
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Dynamic pressure rise during beam injection, caused by electron clouds
Vacuum system upgrades:
e Installed 500 m of NEG coated pipes in warm sections

e Reduced pressure in cold sections to 10~ Torr before cool-down

Image courtesy of Thomas Roser



Beam scrubbing

1E-E :
: . S
T 5 : ;I;& timep
E : . i :
v 1E-7 : ! —
3 . 1 :
2 :
2 :
2 .
= :
1E-8
13200 14100 15100 1600 17100 18200 19:00 20100

21 00 200 2300
—o—  Vacuum,Blue,fAoccelerating, 3,1 o W,

. accum, Blue, Aocelerating, 3,2
Wacuum, Yal low, Azcslerating, 2.1

————  Macuum,Yallow,Azeslarating, 2,2

] ]
b= p=1
E=3 L=

=
=
E=3

Irtenzity [Protons x 10711]

=
-

13500 14:00 15:00 16500 1700 18300 153:00 20300
Time (Start Fill = 7329}
—&— blulllCTtatal yelCCTtatal

21nn 22100 23100

——  hlulCHbunched —+——  yellCMbunched

e After six hours of scrubbing with high intensity beams at injection,
pressure rise at cavities is factor 13 lower than before

e Improved beam lifetime at injection

Image courtesy of Haixin Huang



Intensity Limitation II: Fast Instability Near Transition
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e Fast transverse instability, growth time =~ 15 msec

e High sensitivity around transition due to required zero-crossing of

chromaticities

e Effect of broadband impedance and electron clouds

e Cures: octupoles, adjust crossing time of zero chromaticity, sup-
press electron clouds, chromaticity jump



Luminosity Lifetime Improvement I. IBS lattice

Limited luminosity lifetime requires frequent refills

Increased focusing decreases IBS rate:
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Reducing ‘H by higher phase advance in FODO cells reduces transverse
IBS rate

Ultimately will need full energy cooling



Experimental results for ¢ = 92° phase advance
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Blue: Simulation with ¢ = 82°
Green: Simulation with ¢ = 92°
Red: Measured emittance, at ¢ = 92°

Image courtesy of Alexei Fedotov



Luminosity Lifetime Improvement II: Stochastic Cooling
Longitudinal bunch profile evolution
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Image courtesy of Mike Blaskiewicz



Effect of longitudinal stochastic cooling on Yellow beam lifetime
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IBS leads to debunching; debunched particles continuously removed
from abort kicker gap

Image courtesy of Mike Brennan



Luminosity Lifetime Improvement III: 56 MHz SRF
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e Shorter bunches in conjunction with stochastic cooling

e Scheduled for 2012

Image courtesy of Mike Blaskiewicz



Proton Luminosity Limitation I:. Beam-Beam
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Proton beam lifetime is limited by beam-beam effect; bunches with
one collision have longer lifetime than bunches with two.

Image courtesy of Wolfram Fischer



IP10 top view of 2 electron lenses
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e Compensating one collision point by an electron lens in each beam
increases lifetime

e Tune footprint shrinks due to beam-beam compensation

e Allows for higher intensities/larger beam-beam tuneshift; there-
fore higher luminosity

e Scheduled for 2011

Image courtesy of Wolfram Fischer



Proton Luminosity Limitation II: 10 Hz Orbit Oscillations
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e Both beams oscillate at = 10Hz, caused by helium flow driven
mechanical triplet vibrations

e Modulated beam-beam offsets may lead to emittance growth

e Enhanced beam jitter prevents running at near-integer tunes, where
a larger beam-beam parameter could be reached



Active mechanical damping system to stabilize triplet vibrations

e Based on geophones or accelerometers as vibration sensors, and
electro-mechanical actuators outside the cryostat

e One test setup at a single cold mass in one triplet

e Alternative design: fast orbit feedback based on mechanical vi-
bration measurements

e To be installed on all cold masses in both low-3 IRs over next few
years, beginning in summer shutdown 2009

Images courtesy of Peter Thieberger
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Vibration spectra of one triplet cold mass, with and without active
damping

Image courtesy of Peter Thieberger



Future Upgrades I: EBIS
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e Currently, all ions other than protons are injected into Booster by
two Tandem Van-de-Graaffs some 800 m away

e [Tandem maintenance is costly due to many mechanical parts

e Electron-beam ion source (EBIS) at the existing 200 MeV linac
will replace the Tandems



Superconducting
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e Any ion species can be generated at any desired charge state

e Pulse-to-pulse switching of species possible — important for par-
allel running with Nasa Space Radiation Lab (NSRL) at Booster

e Under construction, CD-4 scheduled for September 2010

Image courtesy of Jim Alessi



Future Upgrades II: eRHIC

full energy
injector
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Main ERL (2 GeV per pass)

Four e-beam
passes

e RHIC-based electron-ion collider with 10 — 20 GeV polarized elec-
trons on 250 GeV protons, or 100 GeV/n ions

o L =1033—-10%cm 2sec!
e Main design: ERL-based linac-ring scheme

e Fallback: ring-ring scheme



Staged approach towards eRHIC
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e 4 GeV ERL to beinstalled in IR2, colliding with 250 GeV polarized
protons in RHIC

e Installation almost entirely in existing RHIC tunnel and detector
building, to reduce cost of civil engineering

e Almost all hardware could be re-used in full-scale eRHIC

Image courtesy of Viadimir Litvinenko



Future Upgrades III: Coherent Electron Cooling
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e Suggested almost 30 years ago by Y. Derbenev

e High gain FEL amplification at optical wavelengths makes it fea-
sible

Image courtesy of Vladimir Litvinenko



Proof-of-principle experiment at RHIC
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e Installation in one RHIC IR

e Utilizes BNL Test-ERL

e Demonstrate coherent electron cooling of 40 GeV proton beam in
2012

Image courtesy of Vladimir Litvinenko



Summary
RHIC performance has continuously improved over past 9 years

Future performance improvements require upgrades that are cur-
rently under way

Converting RHIC into an electron-ion collider seems a natural next
big step

RHIC has a bright, exciting future



