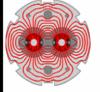


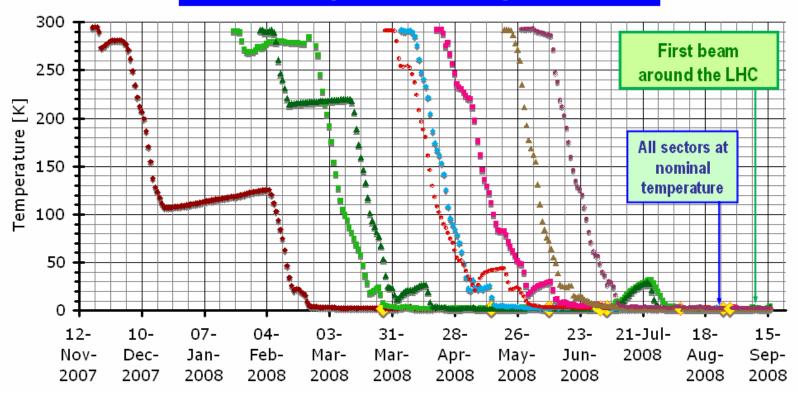
Outline

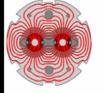

Beam commissioning

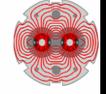
Incident in sector 34

Repair and consolidation

2009/10 LHC run


Conclusions

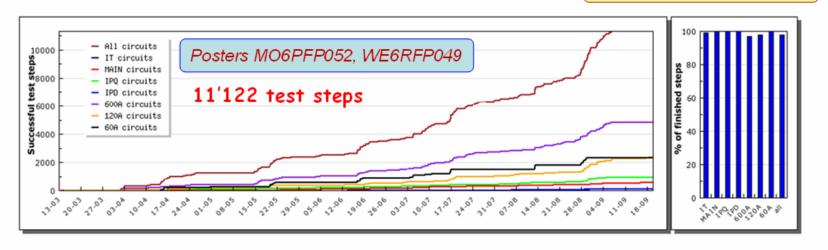

LHC Cool-down


Cool-down time to 1.9 K ~ 4-6 weeks/sector [sector = 1/8 LHC]

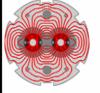
- ◆ ARC56_MAGS_TTAVG.POSST■ ARC78_MAGS_TTAVG.POSST▲ ARC81_MAGS_TTAVG.POSST◆ ARC23_MAGS_TTAVG.POSS*
- ARC67_MAGS_TTAVG.POSST
 ARC34_MAGS_TTAVG.POSST
 ARC12_MAGS_TTAVG.POSST
 ARC45_MAGS_TTAVG.POSST

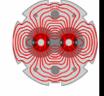
LHC Hardware Commissioning

April to September 2008:


□(Re-)commissioning of the magnets & circuits (power converter, quench protection, interlocking..) following predefined test steps.

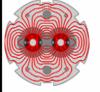
1'700 circuits, 10'000 magnets


□LHC was commissioned to 5.5 TeV (5 TeV target for physics in 2008).


Magnet re-training required above ~6 TeV.

ORAL by L. Rossi, TUE am

Commissioning of beam related equipment (instrumentation, kicker, RF...).

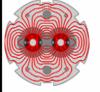


August - September 2008:

- □Injection tests of up to 4 adjacent sectors.
- □Almost all HW systems involved in tests.
- □Essential checks for:
 - Control system.
 - Beam instrumentation.
 - Optics (magnetic model) and aperture.

ORAL by M. Lamont, FRI am

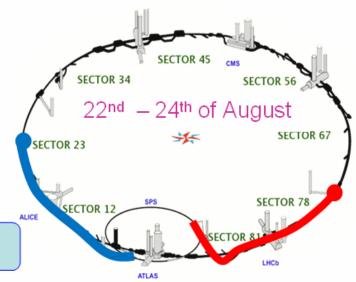
Posters WE6PFP026, WE6PFP026



August – September 2008:

- □Injection tests of up to 4 adjacent sectors.
- □Almost all HW systems involved in tests.
- □Essential checks for:
 - Control system.
 - Beam instrumentation.
 - Optics (magnetic model) and aperture.

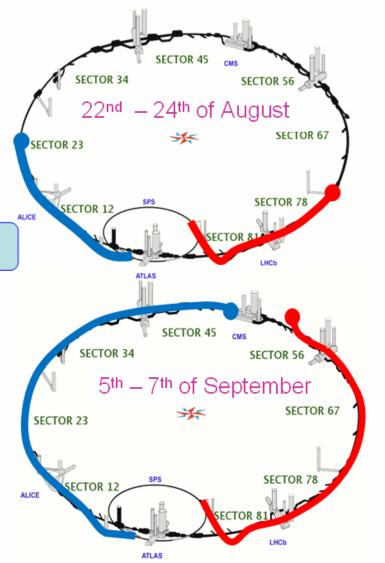
ORAL by M. Lamont, FRI am Posters WE6PFP026. WE6PFP026 SECTOR 45 SECTOR 34 SECTOR 56 8th – 10th of August SECTOR 67 SECTOR 23 Evening of August 8th 2008: First beam in the LHC after ~25 years SECTOR 78 SECTOR 12 ALICE of design and construction. SECTOR 81


August - September 2008:

- □Injection tests of up to 4 adjacent sectors.
- □Almost all HW systems involved in tests.
- □Essential checks for:
 - Control system.
 - Beam instrumentation.
 - Optics (magnetic model) and aperture.

ORAL by M. Lamont, FRI am

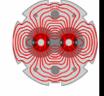
Posters WE6PFP026, WE6PFP026


August – September 2008:

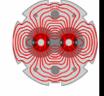

- □Injection tests of up to 4 adjacent sectors.
- □Almost all HW systems involved in tests.
- ■Essential checks for:
 - Control system.
 - Beam instrumentation.
 - Optics (magnetic model) and aperture.

ORAL by M. Lamont, FRI am

Posters WE6PFP026, WE6PFP026



September 10th - control (show) room


Beam threading

Threading by sector:

- □One beam at the time & one hour per beam.
- □Collimators used to intercept the beam (1 bunch, 2×10⁹ p 2% of nominal bunch).
- □Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.

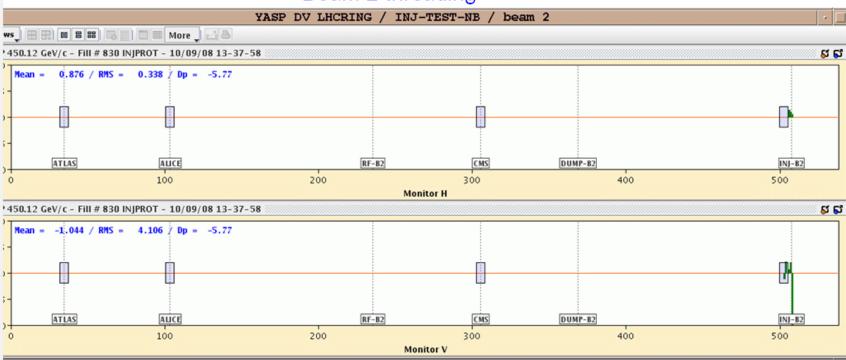
Beam threading

Threading by sector:

- □One beam at the time & one hour per beam.
- □Collimators used to intercept the beam (1 bunch, 2×10⁹ p 2% of nominal bunch).
- □Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.

Beam 2 threading

04.05.2009


Beam threading

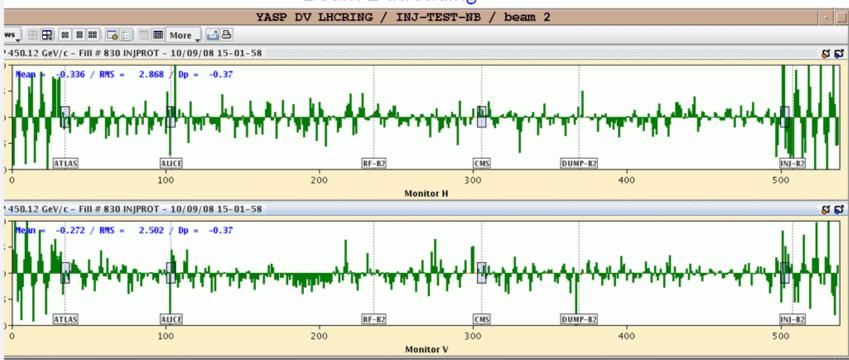
Threading by sector:

- □One beam at the time & one hour per beam.
- □Collimators used to intercept the beam (1 bunch, 2×10⁹ p 2% of nominal bunch).
- □Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.

Beam 2 threading

04.05.2009

Beam threading



Threading by sector:

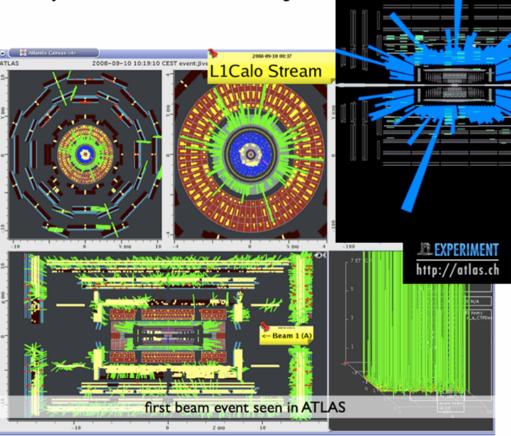
- □One beam at the time & one hour per beam.
- □Collimators used to intercept the beam (1 bunch, 2×10⁹ p 2% of nominal bunch).
- □Beam through 1 sector (1/8 ring), correct trajectory, open collimator and move on.

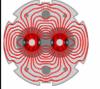
Beam 2 threading

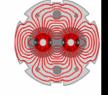
BPM availability ~ 99%

ATLAS & CMS 'events'

Courtesy of CMS

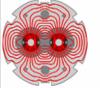

2063, Event 2433, Orbit 15231634, BX 680




Run 62063, Event 2433, Orbit 15231634, BX 680

'Beam-on-collimator' events

Synchronized to beam timing!

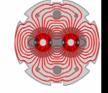

September 10th:


□ 10:30 : Beam 1 around the ring (in ~ 1 hour). Beam makes ~ 3 turns.

□ 15:00 : Beam 2 around the ring, beam makes 3-4 turns.

□ 22:00 : Beam 2 circulates for hundreds of turns...

September 10th:


□ 10:30 : Beam 1 around the ring (in ~ 1 hour). Beam makes ~ 3 turns.

□ 15:00 : Beam 2 around the ring, beam makes 3-4 turns.

□ 22:00 : Beam 2 circulates for hundreds of turns...

September 10th:

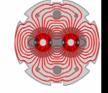
- □ 10:30 : Beam 1 around the ring (in ~ 1 hour). Beam makes ~ 3 turns.
- □ 15:00 : Beam 2 around the ring, beam makes 3-4 turns.
- 22:00 : Beam 2 circulates for hundreds of turns...

September 11th:

- □ Late evening: Beam 2 captured by RF.
- First emergency dump correctly executed.

September 12th:

- □ All base instrumentation operational : BPMs, BLMs, Tune_BCTs.
- □ Good beam lifetime (> 1 hour).


ORAL by R. Jones, WED pm

Posters TU6PFP058, TU6RFP023

9

September 10th:

- □ 10:30 : Beam 1 around the ring (in ~ 1 hour). Beam makes ~ 3 turns.
- □ 15:00 : Beam 2 around the ring, beam makes 3-4 turns.
- 22:00 : Beam 2 circulates for hundreds of turns...

September 11th:

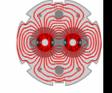
- □ Late evening: Beam 2 captured by RF.
- First emergency dump correctly executed.

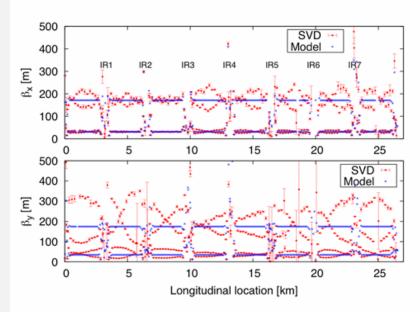
September 12th:

- □ All base instrumentation operational : BPMs, BLMs, Tune_BCTs.
- □ Good beam lifetime (> 1 hour).


ORAL by R. Jones, WED pm

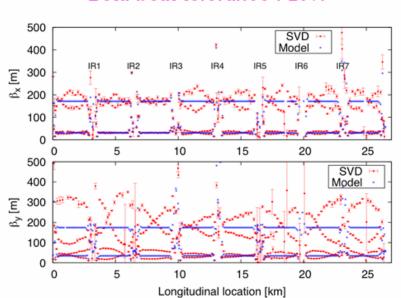
Posters TU6PFP058, TU6RFP023

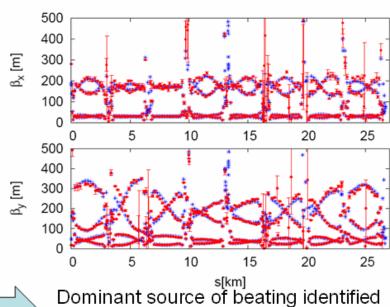

9


A sophisticated magnetic model (FIDEL) was developed to predict transfer functions and field errors for all magnets, backed by measurements and integrated into the control system for online corrections.

A sophisticated magnetic model (FIDEL) was developed to predict transfer functions and field errors for all magnets, backed by measurements and integrated into the control system for online corrections.

Beta-beat tolerance: 20%

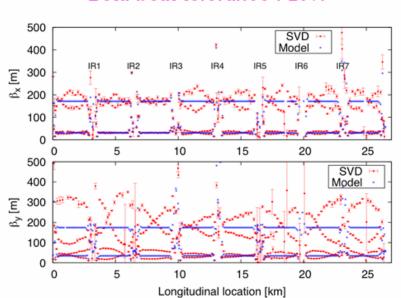

- □ Horizontal beating ≤ 30%
- □ Vertical beating up to 90-100%

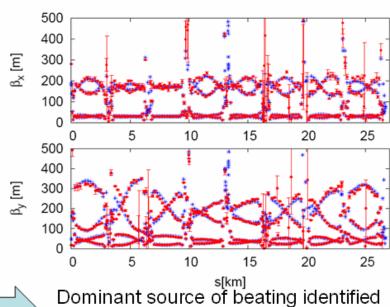

A sophisticated magnetic model (FIDEL) was developed to predict transfer functions and field errors for all magnets, backed by measurements and integrated into the control system for online corrections.

Beta-beat tolerance: 20%

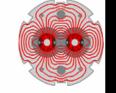
- □ Horizontal beating ≤ 30%
- □ Vertical beating up to 90-100%

Posters WE6PFP023, MO6PFP046

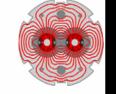

Dominant source of beating identified as trim quadrupole inversion between beam1 & beam2.

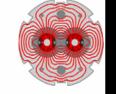

A sophisticated magnetic model (FIDEL) was developed to predict transfer functions and field errors for all magnets, backed by measurements and integrated into the control system for online corrections.

Beta-beat tolerance: 20%

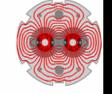

- □ Horizontal beating ≤ 30%
- □ Vertical beating up to 90-100%

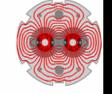
Posters WE6PFP023, MO6PFP046


Dominant source of beating identified as trim quadrupole inversion between beam1 & beam2.



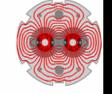
September 19th Incident





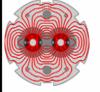
□ Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).

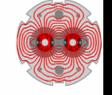
□ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole. Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.



□ Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).

□ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole. Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

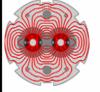


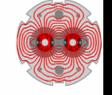


- Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).
- □ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole.

Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

□ An electrical arc developed which punctured the helium enclosure.

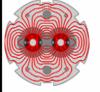


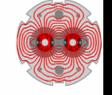


- Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).
- □ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole.

Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

□ An electrical arc developed which punctured the helium enclosure.

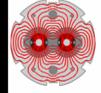




- Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).
- □ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole.

Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

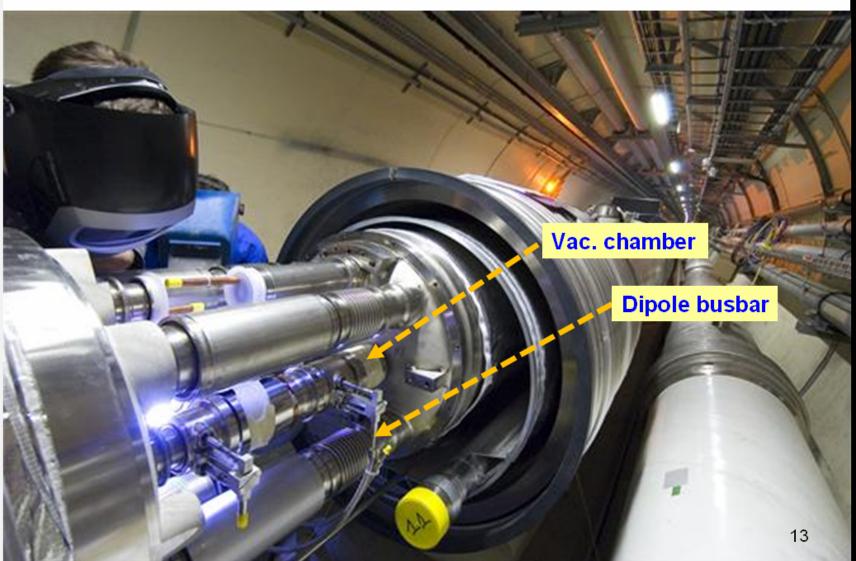
□ An electrical arc developed which punctured the helium enclosure.



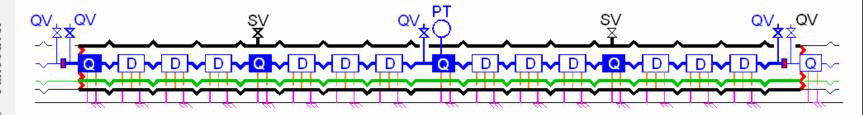

- Last commissioning step of the main dipole circuit in sector 34 : ramp to 9.3kA (5.5 TeV).
- □ At 8.7kA an electrical fault developed in the **dipole bus bar** located in the interconnection between quadrupole Q24.R3 and the neighboring dipole.

Later correlated to a local resistance of ~220 $n\Omega$ – nominal value 0.35 $n\Omega$.

□ An electrical arc developed which punctured the helium enclosure.



Inter-connection


04.05.2009

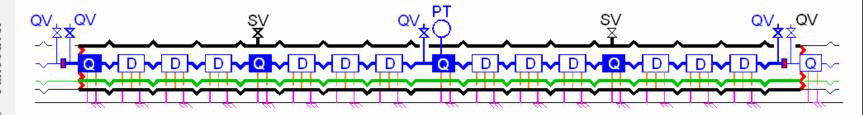
Pressure wave

Cold-mass
Vacuum vessel

Line E

Cold support post

Warm Jack


Compensator/Bellows

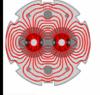
Vacuum barrier

Pressure wave

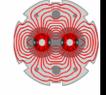
Cold-mass
Vacuum vessel

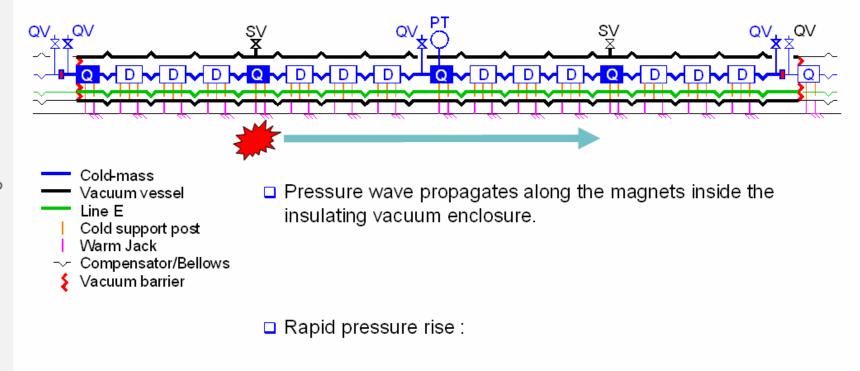
Line E

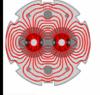
Cold support post

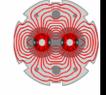

Warm Jack

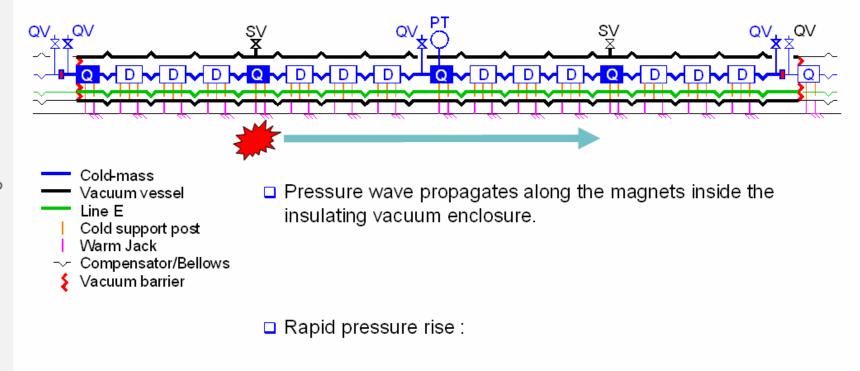
Compensator/Bellows

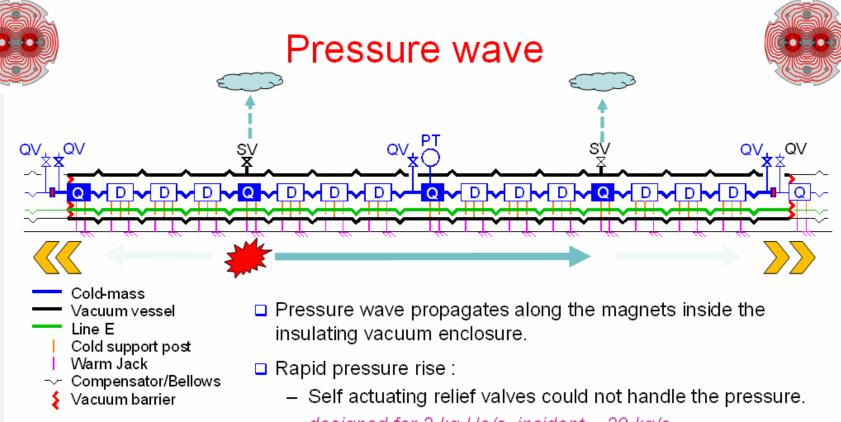

Vacuum barrier


04.05.2009

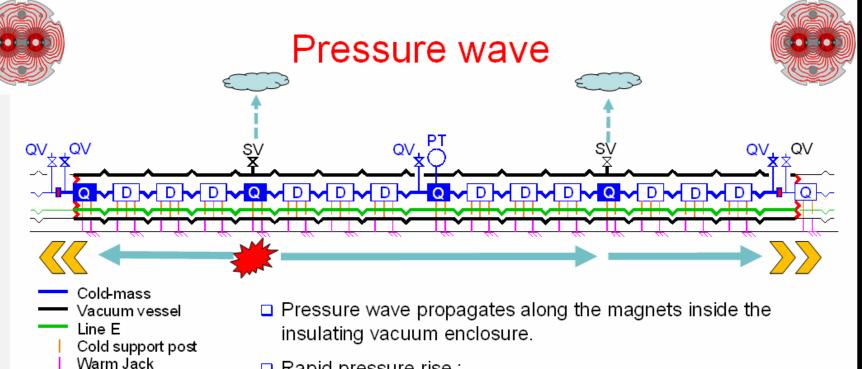

Pressure wave




04.05.2009



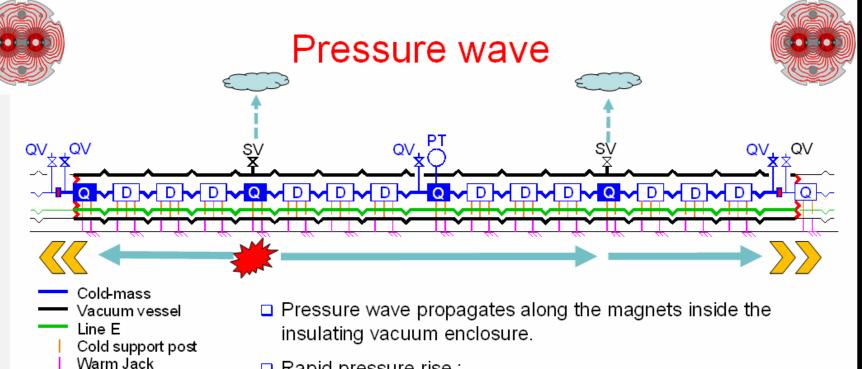
Pressure wave

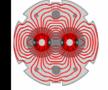


designed for 2 kg He/s, incident ~ 20 kg/s.

Large forces exerted on the vacuum barriers (every 2 cells).
 designed for a pressure of 1.5 bar, incident ~ 8 bar.

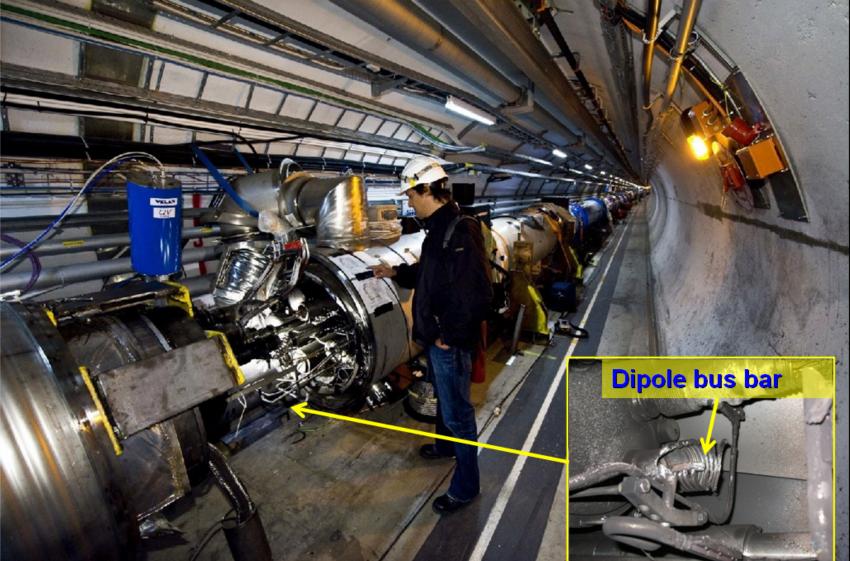
Compensator/Bellows


Vacuum barrier


- Rapid pressure rise :
 - Self actuating relief valves could not handle the pressure. designed for 2 kg He/s, incident ~ 20 kg/s.
 - Large forces exerted on the vacuum barriers (every 2 cells). designed for a pressure of 1.5 bar, incident ~ 8 bar.

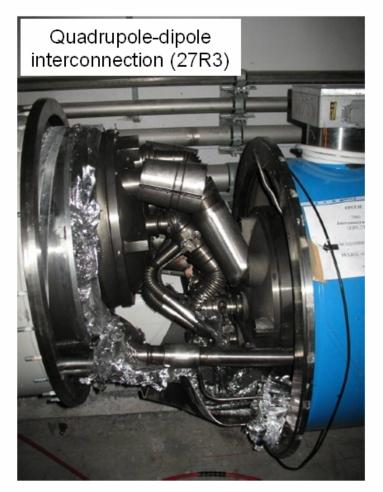
Compensator/Bellows

Vacuum barrier



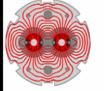
- Rapid pressure rise :
 - Self actuating relief valves could not handle the pressure. designed for 2 kg He/s, incident ~ 20 kg/s.
 - Large forces exerted on the vacuum barriers (every 2 cells). designed for a pressure of 1.5 bar, incident ~ 8 bar.

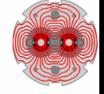
Incident location



04.05.2009

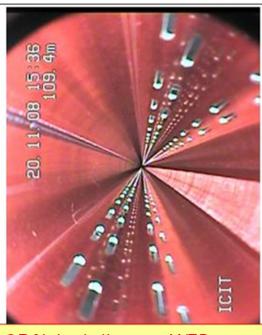
Collateral damage : displacements




Main damage area ~ 700 metres.

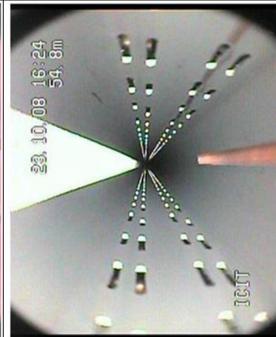
- > **39** out of 154 dipoles,
- 14 out of 47 quadrupole short straight sections (SSS)

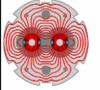
from the sector had to be moved to the surface for repair (16) or replacement (37).

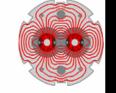

Collateral damage : beam vacuum

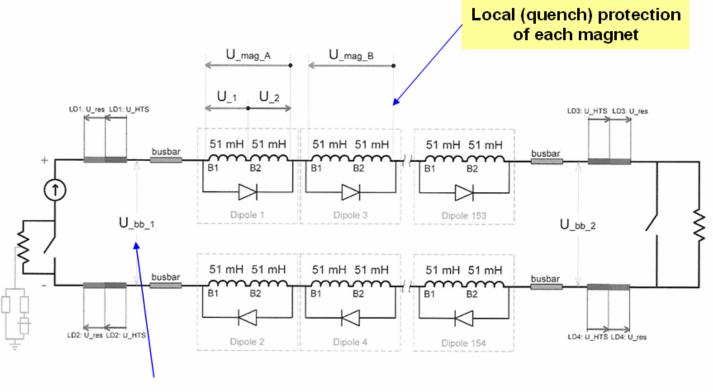
Beam vacuum affected over entire 2.7 km length of the arc.

Beam screen with clean Copper surface. Beam screen contaminated with <u>multi-layer magnet</u> insulation debris.


Beam screen contaminated with sooth.


ORAL by J. Jimenez, WED pm

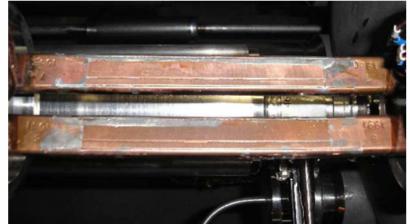

≈ 60% of the chambers

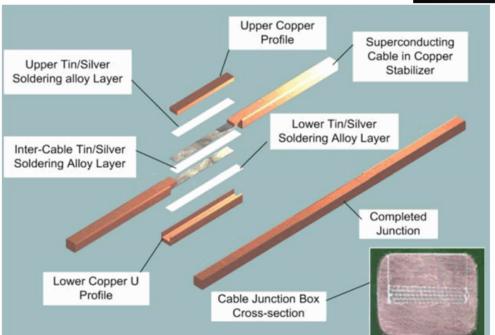


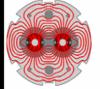
≈ 20% of the chambers

Schematic of the main dipole circuit

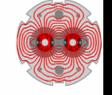
Global protection of the bus-bar and bus-bar joints (splices) between magnets.


Protection threshold 1 V (160 V inductive voltage during ramp). Bus-bar must cope with 100 second discharge time of circuit.

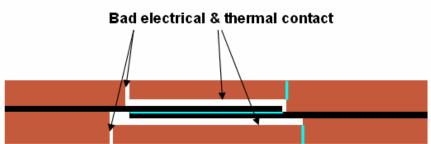

Bus-bar joint

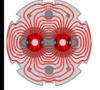

- Superconducting cable embedded in Copper stabilizer.
- Bus bar joint is brazed (not clamped).
- Joint resistance ~0.35 nΩ (@ 1.9 K).
- Protected by global bus-bar protection system, no bypass diode.

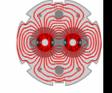
relies on good quality of the joint.

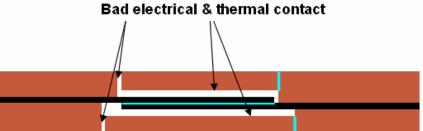


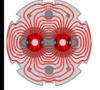
- Visual inspection after brazing.
- For the new joints (repair) the resistance is measured at room temperature to qualify the joint.

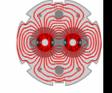


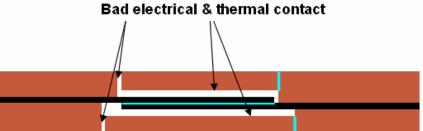

Likely incident cause: poor quality joint


- \square Cryogenic temperature data indicated a local anomalous resistance ~220 nΩ in the cell where the incident occurred.
- Joint model with poor electrical contact, R ~ 220 nΩ.

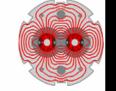



Likely incident cause: poor quality joint

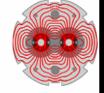

- Cryogenic temperature data indicated a local anomalous resistance \sim 220 n Ω in the cell where the incident occurred.
- Joint model with poor electrical contact, R ~ 220 n Ω .

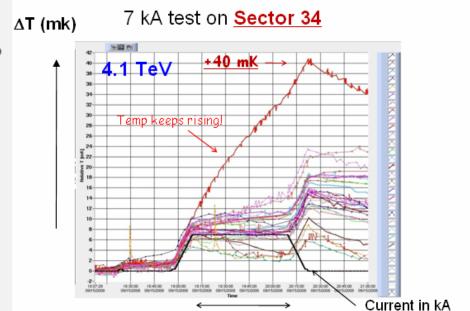


Likely incident cause: poor quality joint

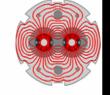


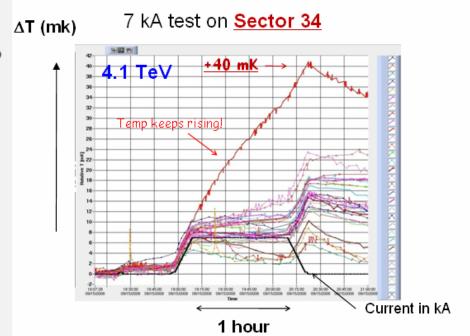
- Cryogenic temperature data indicated a local anomalous resistance \sim 220 n Ω in the cell where the incident occurred.
- Joint model with poor electrical contact, R ~ 220 n Ω .

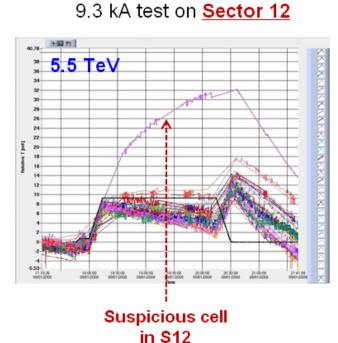



What about the other joints?

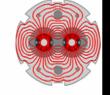
Calorimetric data


■ Logged cryogenic data revealed a temperature anomaly of some 40 mK in the cell of the incident during a previous (lower current) powering cycle.

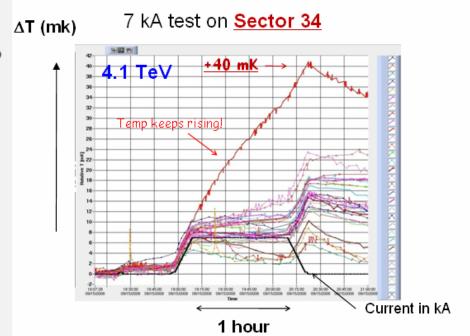

1 hour

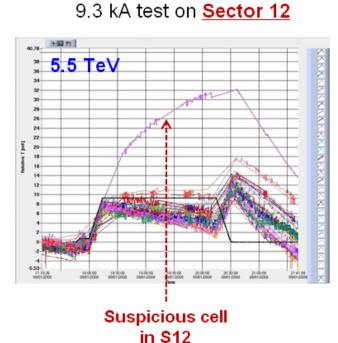

5.5 TeV

Calorimetric data

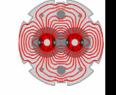


- Logged cryogenic data revealed a temperature anomaly of some 40 mK in the cell of the incident during a previous (lower current) powering cycle.
- Data from other powering tests indicated the presence of another anomaly in sector 12. Calorimetry suggested a ~100 nΩ resistance.

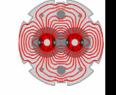




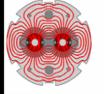
Calorimetric data



- Logged cryogenic data revealed a temperature anomaly of some 40 mK in the cell of the incident during a previous (lower current) powering cycle.
- Data from other powering tests indicated the presence of another anomaly in sector 12. Calorimetry suggested a ~100 nΩ resistance.



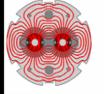
Powerful diagnostics tools were developed:


- \square Calorimetric measurement techniques with the possibility to localize anomalous resistances down to ~40 n Ω within a cryogenic cell.
 - >> Systematic calorimetric tests were launched on all available sectors



Powerful diagnostics tools were developed:

- \square Calorimetric measurement techniques with the possibility to localize anomalous resistances down to ~40 n Ω within a cryogenic cell.
 - >> Systematic calorimetric tests were launched on all available sectors

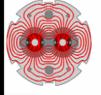


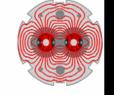


Powerful diagnostics tools were developed:

- \square Calorimetric measurement techniques with the possibility to localize anomalous resistances down to ~40 n Ω within a cryogenic cell.
 - >> Systematic calorimetric tests were launched on all available sectors
- □ High precision voltage measurements were employed to measure all interconnection resistances (resolution < 1 $n\Omega$) in suspected cells.

The quench protection system data averaged over long time intervals for a number of current steps was used to localize magnets with abnormal internal resistances.





Powerful diagnostics tools were developed:

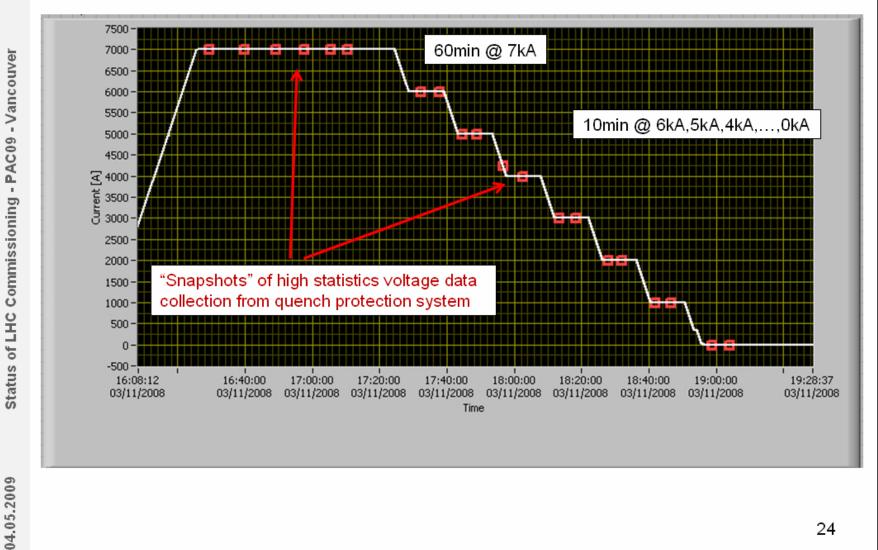
- \square Calorimetric measurement techniques with the possibility to localize anomalous resistances down to ~40 n Ω within a cryogenic cell.
 - >> Systematic calorimetric tests were launched on all available sectors
- □ High precision voltage measurements were employed to measure all interconnection resistances (resolution < 1 $n\Omega$) in suspected cells.

The quench protection system data averaged over long time intervals for a number of current steps was used to localize magnets with abnormal internal resistances.

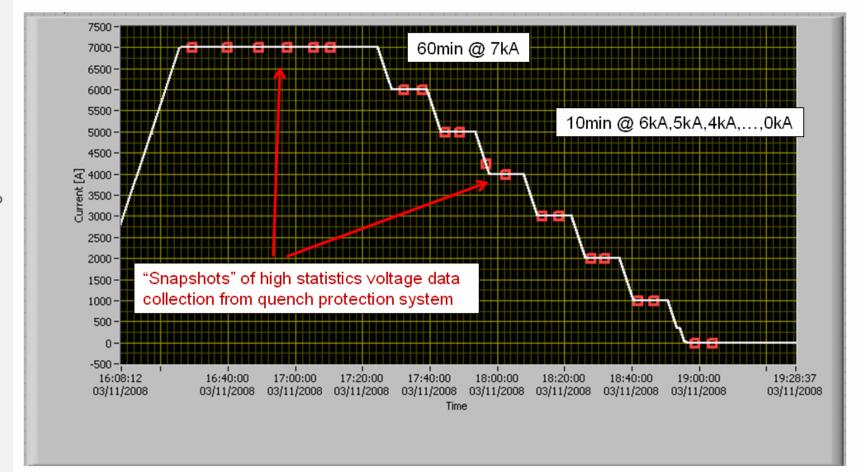
Powerful diagnostics tools were developed:

- \square Calorimetric measurement techniques with the possibility to localize anomalous resistances down to ~40 n Ω within a cryogenic cell.
 - >> Systematic calorimetric tests were launched on all available sectors
- □ High precision voltage measurements were employed to measure all interconnection resistances (resolution < 1 nΩ) in suspected cells.
- The quench protection system data averaged over long time intervals for a number of current steps was used to localize magnets with abnormal internal resistances.

Outcome of the test campaign:

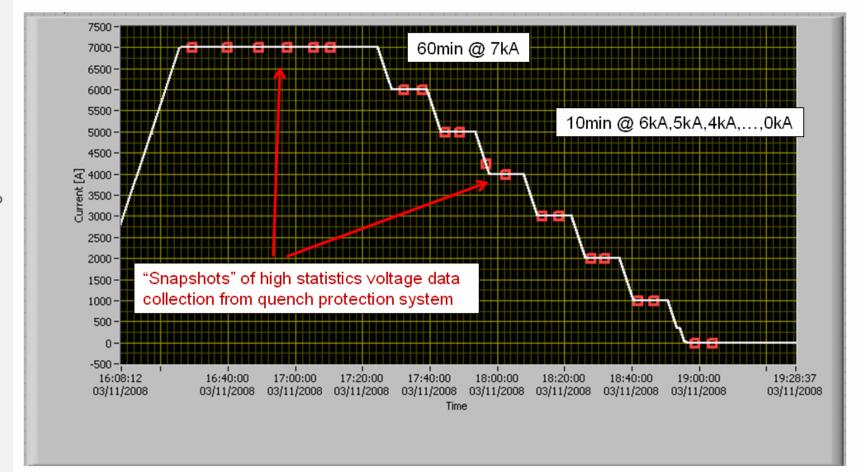

- **2** magnets were localized with **internal** resistances of **50** and **100** $n\Omega$.
 - Both magnets had been tested to 12.4 kA (5% over nom.) before installation!

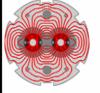
Electrical measurements



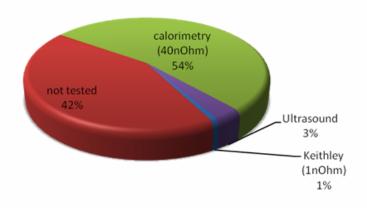
Electrical measurements

04.05.2009

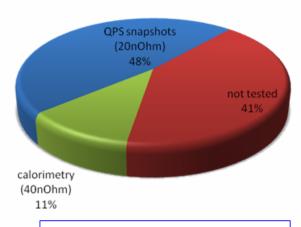



Electrical measurements

04.05.2009



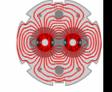
Joint test status



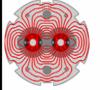
Interconnection joints

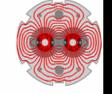
58% of 10080 tested

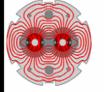
Magnet joints


59% of 13796 tested

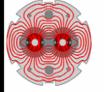
Poster MO6PFP049


Testing the remaining joints is a top priority of 2009!

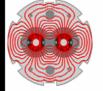

The untested joints have already been operated at 5.5 TeV!



Repair and consolidation

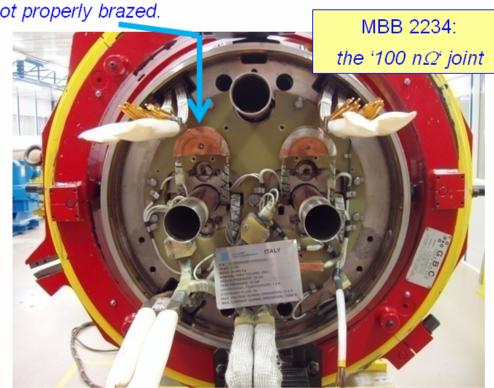


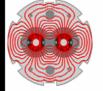
39 dipoles and 14 quadrupoles short straight sections (SSS) brought to surface for repair (16: 9D + 7SSS) or replacement (37: 30D + 7SSS).
All magnets are back in the tunnel. Interconnection work ongoing.



- 39 dipoles and 14 quadrupoles short straight sections (SSS) brought to surface for repair (16: 9D + 7SSS) or replacement (37: 30D + 7SSS).
 All magnets are back in the tunnel. Interconnection work ongoing.
- The 2 dipoles with large internal resistance were replaced.

- 39 dipoles and 14 quadrupoles short straight sections (SSS) brought to surface for repair (16: 9D + 7SSS) or replacement (37: 30D + 7SSS).
 All magnets are back in the tunnel. Interconnection work ongoing.
- The 2 dipoles with large internal resistance were replaced.

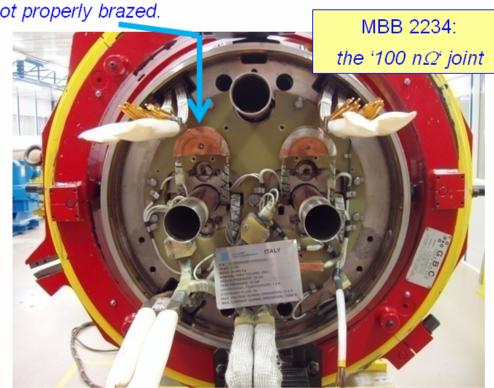


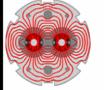

□ 39 dipoles and 14 quadrupoles short straight sections (SSS) brought to surface for repair (16: 9D + 7SSS) or replacement (37: 30D + 7SSS). All magnets are back in the tunnel. Interconnection work ongoing.

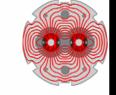
□ The 2 dipoles with large internal resistance were replaced.

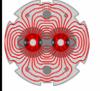
Lack of solder on joint, not properly brazed.

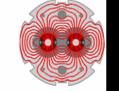
The 50 $n\Omega$ dipole will be stress tested on a bench.

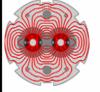


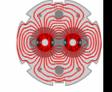

□ 39 dipoles and 14 quadrupoles short straight sections (SSS) brought to surface for repair (16: 9D + 7SSS) or replacement (37: 30D + 7SSS). All magnets are back in the tunnel. Interconnection work ongoing.

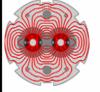

□ The 2 dipoles with large internal resistance were replaced.

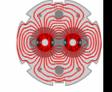

Lack of solder on joint, not properly brazed.


The 50 $n\Omega$ dipole will be stress tested on a bench.








- Many vacuum chambers are cleaned in situ.
 - Majority of magnets remain in place.
 - Cleaning of sooth with special cleaning head.
 - Removal of MLI debris by venting and pumping.

Major upgrade of the quench protection system.

Poster MO6PFP047

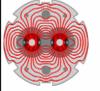
- Protection of the main quadrupole and dipole joints.
- Protection against symmetric quenches of the beam1 and beam2 apertures.
- High statistics measurement accuracy to < 1 $n\Omega$.
- >> Provides high precision online resistance monitoring of all joints!

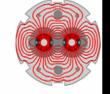
- Many vacuum chambers are cleaned in situ.
 - Majority of magnets remain in place.
 - Cleaning of sooth with special cleaning head.
 - Removal of MLI debris by venting and pumping.

Major upgrade of the quench protection system.

Poster MO6PFP047

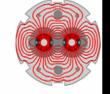
- Protection of the main quadrupole and dipole joints.
- Protection against symmetric quenches of the beam1 and beam2 apertures.
- High statistics measurement accuracy to < 1 $n\Omega$.
- >> Provides high precision online resistance monitoring of all joints!



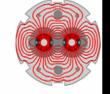

- Many vacuum chambers are cleaned in situ.
 - Majority of magnets remain in place.
 - Cleaning of sooth with special cleaning head.
 - Removal of MLI debris by venting and pumping.
- Major upgrade of the quench protection system.

Poster MO6PFP047

- Protection of the main quadrupole and dipole joints.
- Protection against symmetric quenches of the beam1 and beam2 apertures.
- High statistics measurement accuracy to < 1 $n\Omega$.
- >> Provides high precision online resistance monitoring of all joints!
- □ Reinforcement of the quadrupole/SSS supports.


Consolidation (II)

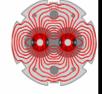
□ Improvement of the pressure relief system to eventually cope with a maximum He flow of <u>40 kg/s</u> in the arcs (maximum conceivable flow, 2 x incident).

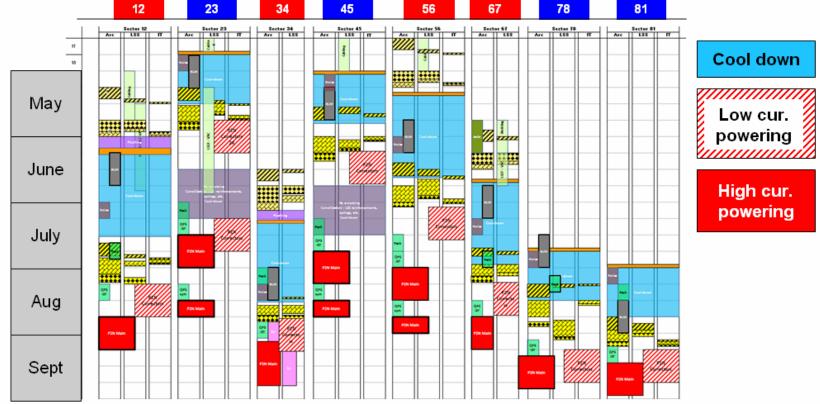

Consolidation (II)

□ Improvement of the pressure relief system to eventually cope with a maximum He flow of <u>40 kg/s</u> in the arcs (maximum conceivable flow, 2 x incident).

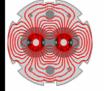


Consolidation (II)


□ Improvement of the pressure relief system to eventually cope with a maximum He flow of <u>40 kg/s</u> in the arcs (maximum conceivable flow, 2 x incident).

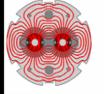


LHC run 2009/20010


Planning for 2009

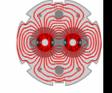
...followed by a long LHC run until November 2010, with short break around Christmas/new year 2009/2010.

Target beam energy for physics: 5 TeV.



✓ 50-100 pb⁻¹ of *good* data at \sqrt{s} = 10 TeV.

Many new limits set on hypothetical particles.



04.05.2009

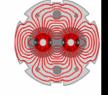
LHC Experiments Desiderata

✓ 50-100 pb⁻¹ of *good* data at \sqrt{s} = 10 TeV.

Many new limits set on hypothetical particles.

✓ 200-300 pb⁻¹ of *good* data at \sqrt{s} = 10 TeV.

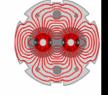
Start competing with Tevatron on Higgs masses ~ 160 GeV/c2.



✓ 50-100 pb⁻¹ of good data at \sqrt{s} = 10 TeV.

Many new limits set on hypothetical particles.

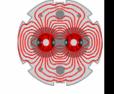
- ✓ 200-300 pb⁻¹ of good data at \sqrt{s} = 10 TeV. Start competing with Tevatron on Higgs masses ~ 160 GeV/c².
- ✓ 1 fb⁻¹ of good data at \sqrt{s} = 10 TeV. Higgs discovery possible ~ 160 GeV/c².



✓ 50-100 pb⁻¹ of good data at \sqrt{s} = 10 TeV.

Many new limits set on hypothetical particles.

- ✓ 200-300 pb⁻¹ of good data at \sqrt{s} = 10 TeV. Start competing with Tevatron on Higgs masses ~ 160 GeV/c².
- ✓ 1 fb⁻¹ of good data at \sqrt{s} = 10 TeV. Higgs discovery possible ~ 160 GeV/c².



✓ 50-100 pb⁻¹ of *good* data at \sqrt{s} = 10 TeV.

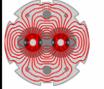
Many new limits set on hypothetical particles.

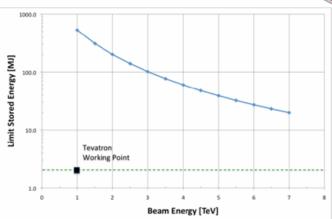
✓ 200-300 pb⁻¹ of *good* data at \sqrt{s} = 10 TeV.

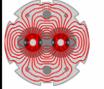
Start competing with Tevatron on Higgs masses ~ 160 GeV/c2.

✓ 1 fb⁻¹ of good data at \sqrt{s} = 10 TeV.

Higgs discovery possible ~ 160 GeV/c2.

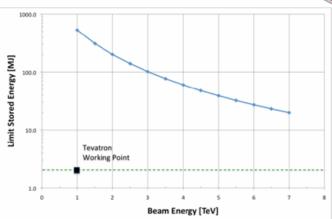


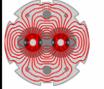




□ Present 4-stage collimation system limits the total intensity to ≈10% of the nominal intensity.

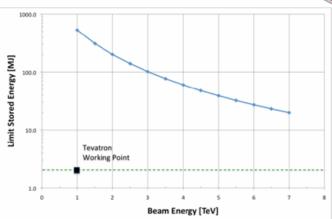
> ORAL by R. Assmann, TUE pm ORAL by R. Appleby, WE pm

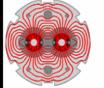




□ Present 4-stage collimation system limits the total intensity to ≈10% of the nominal intensity.

> ORAL by R. Assmann, TUE pm ORAL by R. Appleby, WE pm





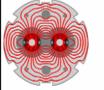
□ Present 4-stage collimation system limits the total intensity to ≈10% of the nominal intensity.

> ORAL by R. Assmann, TUE pm ORAL by R. Appleby, WE pm

□ Present 4-stage collimation system limits the total intensity to ≈10% of the nominal intensity.

> ORAL by R. Assmann, TUE pm ORAL by R. Appleby, WE pm

□ Operation in 2009/10.


Tevatron Working Point	1.0	 2 3	4	5	6	7	
Stored Energy	Imi						
	Stored Energy			-			

No. bunches/ beam	Protons/ bunch	% of nominal intensity	β* (m)	Peak L (cm ⁻² s ⁻¹)
43	5×10^{10}	0.7	2	6.9x10 ³⁰
156	5×10^{10}	2.4	1	5.0x10 ³¹
156	1×10 ¹¹	4.8	1	2.0x10 ³²
720 (50 ns)	5×10^{10}	11.1	2	1.2x10 ³²
2808	1.15×10 ¹¹	100	0.55	1.0x10 ³⁴

No crossing angle

Int. luminosity target achievable with ~40% availability

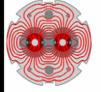
Short Pb ion run foreseen end 2010.

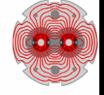
□ Present 4-stage collimation system limits the total intensity to ≈10% of the nominal intensity.

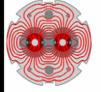
> ORAL by R. Assmann, TUE pm ORAL by R. Appleby, WE pm

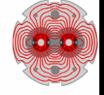
Operation in 2009/10.

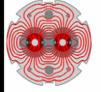
1000.0					
inergy [MJ]		_			
Limit Stored Energy [MJ]	Tevatron Working Point			-	
	working Point		 	 	

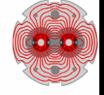

No. bunches/ beam	Protons/ bunch	% of nominal intensity	β* (m)	Peak L (cm ⁻² s ⁻¹)
43	5×10^{10}	0.7	2	6.9x10 ³⁰
156	5×10^{10}	2.4	1	5.0x10 ³¹
156	1×10 ¹¹	4.8	1	2.0x10 ³²
720 (50 ns)	5×10^{10}	11.1	2	1.2x10 ³²
2808	1.15×10 ¹¹	100	0.55	1.0x10 ³⁴

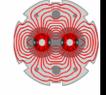

No crossing angle


Int. luminosity target achievable with ~40% availability


Short Pb ion run foreseen end 2010.


Ion setup should be 'straight forward' as little difference wrt protons.





04.05.2009

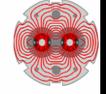
Summary

■ With beam the LHC is a wonderful machine (at injection).

All key systems were operational.

Remarkable performance of the beam instrumentation.

□ The incident on Sept. 19th was very likely due to a poor quality bus-bar joint.


Quench protection system upgrade under way.

New diagnostics for online monitoring and protection of all joints.

Improvements of the pressure relief system.

Repair is progressing well, re-commissioning will start end-May.

■ With beam the LHC is a wonderful machine (at injection).

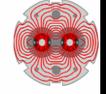
All key systems were operational.

Remarkable performance of the beam instrumentation.

□ The incident on Sept. 19th was very likely due to a poor quality bus-bar joint.

Quench protection system upgrade under way.

New diagnostics for online monitoring and protection of all joints.


Improvements of the pressure relief system.

- Repair is progressing well, re-commissioning will start end-May.
- Beam commissioning will resume in September 2009.

Followed by a 12 months run at 5 TeV.

Aim to integrate few hundred pb-1 with L up to ~1032 cm-2s-1

■ With beam the LHC is a wonderful machine (at injection).

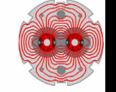
All key systems were operational.

Remarkable performance of the beam instrumentation.

□ The incident on Sept. 19th was very likely due to a poor quality bus-bar joint.

Quench protection system upgrade under way.

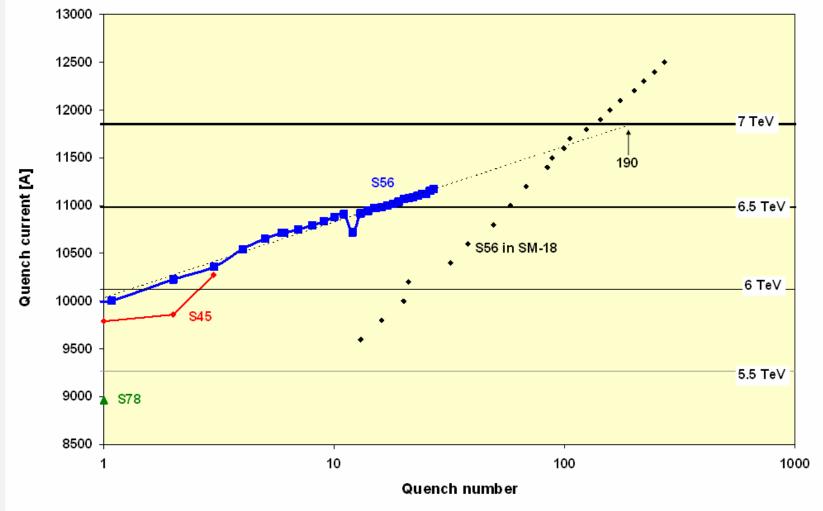
New diagnostics for online monitoring and protection of all joints.


Improvements of the pressure relief system.

- Repair is progressing well, re-commissioning will start end-May.
- Beam commissioning will resume in September 2009.

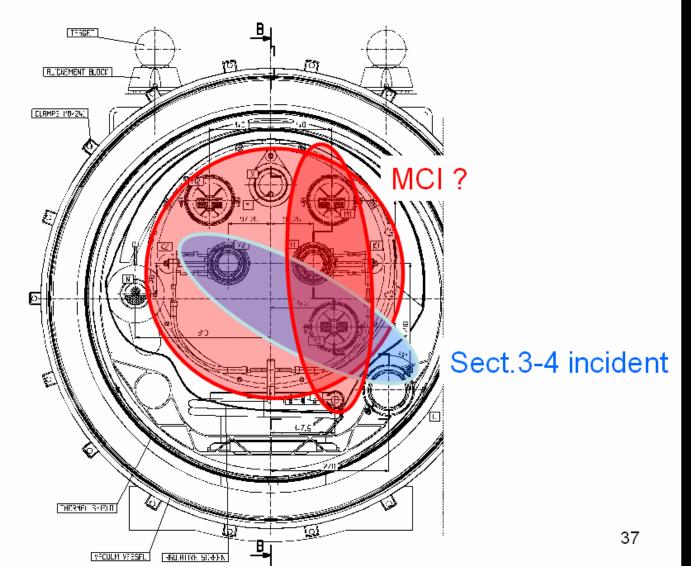
Followed by a 12 months run at 5 TeV.

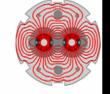

Aim to integrate few hundred pb-1 with L up to ~1032 cm-2s-1

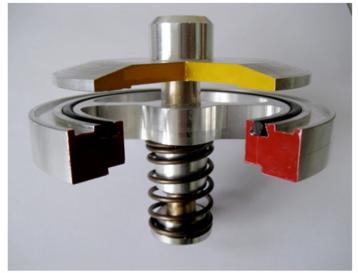

Reserve slides

04.05.2009

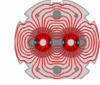
Magnet training to 7 TeV




Maximum Conceivable Incident

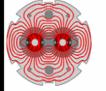


Existing relief valves (quadrupoles)



- □ Designed for He flow of 2 kg/s
- □ Estimate for incident is ~ 20 kg/s

Damage area

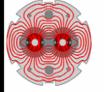


Displacements status in sector 3-4 (From Q17R3 to Q33R3); P3 side

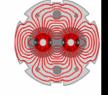

			Based	on me	asurem	ents by	TS-SU	J, TS-M	ME and	d AT-M 	CS						
	Q17	A18	B18	C18	Q18	A19	B19	C19	Q19	A20	B20	C20	Q20	A21	B21	C21	Q21
Cryostat Cold mass	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 ?	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5
	Q21	A22	B22	C22	Q22	A23	B23	C23	Q23	A24	,B24	C24	Q24	A25	B25	C25	Q25
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	-7 -25	<2 -67	<2 -102	<2 -144	-187 <5		<2 -130	<2 -60	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5
	Q25	A26	B26	C26	Q26	A27	B27	C27	Q27	Δ28	B28	C28	Q28	A29	B29	C29	Q29
	Q25	720	D20	020	QZU	721	021	021	اعلاا	720	,D20	020	Q20 → .		DZS	023	QZS
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 57	<2 114	<2 150?	474 -45	-4 230	<2 189	<2 144	11 92?	<2 50	<2 35	<2 <5	<2 <5
													Vert				
	Q29	A30	B30	C30	Q30	A31	B31	C31	Q31	A32	B32	C32	Q32	A33	B33	C33	Q33
Cryostat Cold mass	<2 <5	<2 <5	<2 <5	<2 <5	<2 <5	<2 19	<2 77	<2 148	188 <5	<2 140	<2 105	<2 62	5 18	<2 <5	<2 <5	<2 <5	<2 ?
>0	SSS with		n barrier		Open in		otions		Disconn	e cted	١	J					

Values are in mm Not measured yet Cold mass displacement ←→ Buffer zones Cryostat displacement

Dipole in short circuit Electrically damaged IC



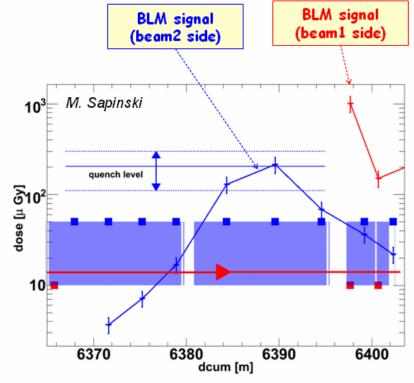
Summary of joint measurements

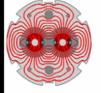


Sectors	Arc dipole Arc Quadrupoles				les	IPQ			
Tests	Calorimetric	Magnet	Bus-bar (on request)	Calorimetric	Magnet	Bus-bar (on request)	Calorimetric	Magnet	Bus-bar (on request)
1-2	(2)	1							
2-3									
3-4									
4-5									
5-6	(0)	0		(0)	0				
6-7	(1)	1		(1)	0				
7-8	(1)	0	0	(1)	0				
8-1	(1)	0	0	(0)	0				

- (1) suspected cases from calorimetric measurements
- 1 confirmed cases by electrical measurement

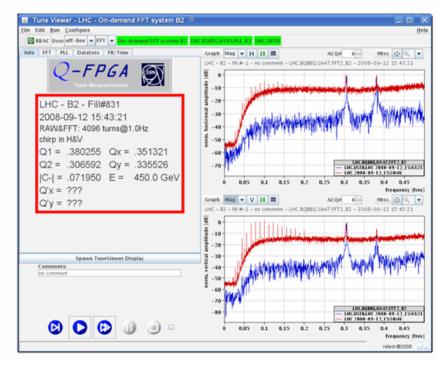
'Quenches' with beam




□ The quench protection system (QPS) was triggered with fast losses of 2×10° and 4×10° protons, only one part in 10'000 of the nominal beam. Without force-quenching by the QPS with the quench heaters, the magnets would have recovered spontaneously

- □ Simulations agree within a factor ~2 with the expectations from the magnet model on the energy density to quench:
 - Measurement ~ 15 mJ/cm³
 - Expectation ~ 30 mJ/cm³

Beam commissioning with a single bunch of 2×10^9 p.



Magnetic model

- Momentum (b₁ [US=b0]):
 - LHC average momentum = 450.5 ± 0.2 GeV
 - \triangleright ∆b₁ between rings ≈ 1.5×10⁻⁴
 - > ∆b₁ among 8 sectors ≈ 3×10-4

- Tune (b₂ [US=b1]):
 - Measured tunes are within 0.15 of nominal ones.
 - Corresponds to an error of 25×10⁻⁴ on b2, expected ±20×10⁻⁴.

