

LASER SYSTEMS FOR NEXT GENERATION LIGHT SOURCES

Miltcho B. Danailov

Alexander Demidovich

Rosen Ivanov

Ivaylo Nikolov

Paolo Sigalotti

Sincrotrone-Trieste

Yurii Loyko

B.I.Stepanov Institute of Physics, Minsk

OUTLINE

- Introduction
- Main laser systems in the FEL light sources under development
- General requirements
- Specific issues
- A. Photoinjector laser
- B. Laser Heater
- C. Seed Lasers
- New laser developments
 (high rep rate /average power, VUV-soft tuneable X-ray seed)
- Jitter and drift problems:strategies for reduction

Main laser systems in the FEL light sources under development

- Photoinjector laser
- Seed laser
- User lasers
- Laser Heater
- Optical master oscillator
- Electro-optical sampling laser
- Short pulse 'chirping laser'
- ...more to come!

GENERAL REQUIREMENTS

- Wavelength: mostly UV, IR in LH; tuneable in SL
- Rep rate 10 Hz-120 Hz normal conducting; up to MHz superconducting
- Synchronization to external reference with jitter 20-200fs RMS;
 no phase (CEP) stabilization requested sofar
- Pulse duration: 50fs- 15 ps FWHM (risetime<1 ps)
- Pulse energy: 10 -500 μJ
- Pulse shaping: flat-top, increasing quadratic ramp, very short gaussian with low TBWP
- Beam shaping: flat-top; gaussian; well-behaving in propagation
- Pulse-to-pulse stability: < 4% RMS, goal <2% -> diode-pumping!
- High reliability (>99% uptime)-> must be based on a mature technology
- Commercial units available
- Easy to integrate in a facility ->Remote control/diagnostics

In general: no commercial system meeting all !

PHOTOINJECTOR LASER

- Pulse energy equirements depend on the type of gun
- 1. Cu-based gun on normal conducting machines
- 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
- Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
- Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier , pumped by diode-pumped Nd:YLF Q-switched lasers

PHOTOINJECTOR LASER

- Pulse energy equirements depend on the type of gun
- 1. Cu-based gun on normal conducting machines
- 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
- Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
- Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier, pumped by diode-pumped Nd:YLF Q-switched lasers

PHOTOINJECTOR LASER

- Pulse energy equirements depend on the type of gun
- 1. Cu-based gun on normal conducting machines
- 0.4 mJ at 260 nm on cathode -> >15 mJ in IR (12% THG efficiency, 25% transmission pulse/beam shaping and beam transport)
- Bandwidth at least 4 nm in IR to allow <1 ps rise/fall times
- Commercially available units

At present only choice Ti:Sapphire based femtosecond oscillator+regenerative amplifier +2 stage multipass amplifier , pumped by diode-pumped Nd:YLF Q-switched lasers

PIL PULSE SHAPING

- 1. PULSE SHAPING SCHEMES FREQUENCY DOMAIN:
- 4-f dispersive system (or other geometries)
- DAZZLER (acousto-optic dispersive Filter), Fastlite

TIME DOMAIN

Pulse stacking

TWO STAGE SETUP FOR FERMI

UV PULSE SHAPING

MAIN ISSUES:

- a. High UV energy/peak power ->aging and damage gratings and other optics Solution: use large beam diameter, transmission gratings, multilayer deformable mirror and CaF2 optics,
- b. Narrow spectrum: long focal length lenses in the 4-f system

- ➤ Development of genetic algorithm for pulse shape optimization
- > Aging of the deformable mirror

UV PULSE SHAPING

2. Pulse stacking: in UV the final shape is obtained by the addition of a number of delayed pulses; polarisation splitting used to avoid interference effects

Issues: complexity increases with number of stages:sensitivity to alignement

Courtesy: H. Tomizawa

New scheme based on birefringent crystals

Dispersion compensation needed

PIL Beam Shaping

- Transformation of gaussian into flat-top beam in UV
- Aspheric shaper Newport (used at SLAC)
- Optimized aspheric shaper MBI (less sensitive to alignment)
- Shaper MOLTECH (based on spherical lenses) Elettra
- Circular aperture to select only the central part of the beam SLAC, SPARC
- Adaptive shaper (e.g. deformable mirror, Tomizawa, SPring8)
- Why not producing the flat-top in IR?

Advantages: better HG efficiency and no spatial chirp

Problems: very large size needed to avoid nonlinear effects; the flat-top develops a modulation which would be a problem for the 4-f system

PIL BEAM TRANSPORT/INSERTION

elettra

 MBI scheme, used at FLASH, to be used for the European XFEL (low rep rate macrobunches, up to 800 micropulses)

First version: Nd:YLF linear amplifier Chain; upgraded recently to diode Pumping

Next generation: Yb:YAG based

- Lasers for true CW operation
- Cu-based 1 nC machine: at least 3 mJ needed in the IR
- -Ti:Sapphire > based on existing technology good to 10-20 KHz (50 W level systems are available, based on crio-cooling and downchirped amplification)
- -If pulse rise-time requirement is decreased to 2 ps, Nd:YLF could be used
- -Yb:KYW; Yb:Lu2O3 promising, literature reports 10µJ, MHz range
- Yb-fibre based systems 100 µJ

SEED LASER

- In general, a laser pulse interacting with the e-bunch in an undulator to create bunching at a (short) wavelength
- FERMI is the first FEL entirely based on seeding, with two FEL lines having configurations based on a single seed laser operating in the 200-300 nm range

Courtesy E.Allaria

UV seed: FERMI SEED LASER

Parameter	Specs	Measured
Tunability range (nm)	240-360	195-350
Peak power (MW)	100	>100
Pulse duration (fs)	100	<100
Pulse Energy Stability RMS 5000 shots	<4%	<2%
Timing jitter (fs RMS)	<100 fs	TBM
Pointing stab. (µrad)	<20 (goal 10)	<20
Wavelength stab.	10-4	<10-4
Beam quality (M ²⁾	<1.5	TBM

FERMI @elettra

FERMI SEED LASER PERFORMANCE

100MW le∨el

Tuning curve in UV

TOPAS

Regen Amp

Seed fibre laser

Dx = 0.73 mm; Dy = 0.66 mm;

Typical Spectrum and crosscorelation with short Visible pulse

Spatial distribution at focus

PAC'09

M.B.Danailov et al

FERMI SEED LASER PERFORMANCE

Recent upgrade to shorter wavelength

Near future Upgrade:

- -Extension to 165-195 nm region by using KBBF (Mixer 4)
- -Upgrade of the pump laser to 8-10 mJ range by adding one multi-pass stage
- Controlled pulse delay at the exit with wavelength tuning

SEED BY HG IN GASES

Required:

- Tunability in the range 40-70 nm (by full tunability between two harmonics);
- Peak power in the 1MW range pulse energy: 150 nJ range if HHG chamber is in the laser room, 50 nJ range with HHG chamber close to the undulator entrance and aligned;
- Pulse duration 25-30 fs

Main options for the pump laser under consideration

- Use of UV or VIS pulses from an upgraded version of the present parametric amplifier/HG system: expected 200 μJ, 80 fs in UV and 800 μJ, 50 fs in VIS
- Use of a comercially available tuneable Ti:Sapphire amplifer, tuning range ±30 nm around 790 nm, pulse duration:50 fs; pulse energy 10 mJ
- Use of fixed wavelength pump and tuning of the HG output by controlling other parameters

Direct seeding concept

Main idea: replace Ti:Sapphire oscillators with amplified frequency doubled timing pulses for seeding the regen amplifiers Main issues:

- -Power (>0.5 nJ at 780 needed)
- Bandwidth (>8 nm for a 100 fs system, >20 nm for seeding a 50 fs range amp)

TESTS LASER JITTER

Test of PIL locking to an external fbre laser by optical cross-correlation

Phase noise measurement

Distribution of arrival time at the second x-corr

M.B.Danailov et al

CONCLUSIONS

- Ultrafast lasers are becoming crucialy important part of new VUV and X-ray FELS
- Ti:Saphire based systems will continue to be the most popular for up to 10 kHz rate
- Higher rep rate facilities will most probably need an alternative technology. Promising candidate Yb-doped thin-disk media and especially fiber based oscillators and amplifiers
- Tunable seeding with HHG in the 40 nm range feasible
- Dedicated R&D on ultrafast lasers applied to FEL technology may substantially improve the performance

THANK YOU FOR THE ATTENTION

BACKUP SLIDES

FERMI HHG SEED BASED ON TUNABLE Ti:SAPPHIRE AMPLIFIER

PROPOSED APPROACH FOR REACHING THE PARAMETERS REQUIRED FOR FEL SEEDING

- HHG in Xe in the 45-75 nm range
- Use of Tunable Ti:Sapphire based regen+multipass amplifier with the following parameters:

Tunability ±25 nm around 800 nm

Use of bi-chromatic pump (800 nm +400 nm) for production of odd+even harmonics

Pulse duration 50 fs

Pulse energy: 10 mJ (up to 15 mJ) at 800 nm /2 mJ at 400 nm

Approach for obtaining the amplifier tunability developed by *Amplitude Technologies*:

Broadband seed oscillator (>100 nm)

- Spectral phase shaping before Regenerative Amplifier (Dazzler)
- -Spectral amplitude shaping in the Regenerative amplifier (Mazzler)
- -Pulse/spectrum measurement after multipass amplifier and closed loop control of the Dazzler/Mazzler for remote controlled wavelength tuning

Tunability curve demonstrated by Amplitude Technologies (courtesy F.Canova, G.Riboulet)

PAC'09

M.B.Danailov et al

FERMI SHTTER REDUCTION - DIRECT SEEDING

Seed a Ti:sapphire amplifier after pulse shaping/amplification:

~100 fs (~3 nJ @ 1550 nm & ~1 nJ @ 775 nm)

Where we are:

- -SHG unit based on chirped PPLN developed
- -tests of the amplifier setup started

SHG results

Input spectrum (Menlo TC1550)

CrossCorrelator Test Bed

Locking setup

Balanced Crosscorrelator

PAC'09

M.B.Danailov et al