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Wisconsin Free Electron Laser (WIFEL)
Next Generation VUV/Soft X-ray Light Source

Electron
Source Pul
Compressors Electro
Accelerator
Beam Switchyard
0 > FEL
100 Magnet Array
200 — Experimental Areas

300
400

Physical, chemical, and biological
activity can been viewed in detail as
they evolve and function on their
characteristic temporal, spatial, and
energy scales—femtoseconds,
nanometers, millivolts
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WIFEL Facility Goals

« Transform-limited output — longitudinal and transverse
« Short pulses: 20 fs and maybe shorter
« Enabling resolution of meV or less
 Many FELs operating simultaneously and independently
at up to ~1 MHz repetition frequency per beamline
« Complete tunability to 900 eV in first harmonic
 Third harmonic for higher energy
* Tunable polarization
» Peak power and brilliance much larger than best synchrotrons/ERLSs

« Average flux and brilliance much larger than best synchrotrons/ERLSs
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Next Generation VUV/Soft X-ray Sources )

= Possible Sources
= Relatively large, low energy, low emittance storage ring
= Energy recovery linac (ERL)

= Soft X-ray free electron laser, seeded for best
performance

= How we converged
= Storage rings are approaching limits of performance

= At these lower photon energies, an ERL doesn’t offer a
big advantage over storage rings since horizontal and
vertical ERL emittances vary as 1/Energy

= ERL time structure problematic for, e.g., pump/probe

= FELs will be truly transformational in enabling cutting
edge science with dynamics as the key word
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WIFEL Technical Approach

e 2.2 GeV CW superconducting linac with RF separation for many
high-rep-rate beamlines

 Superconducting electron gun injector
 Low charge bunches
« Seeding with High Harmonic Generation sources
o Stability and clean spectrum
» < 20 femtosecond pulse length
« Cascaded harmonic generation without “fresh bunch”

« Beam energy, configuration, and undulator technology trade-
off is “conservative” to establish clear feasibility in a
Pre-Conceptual Design
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WIFEL Schematic
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All FELs operate
simultaneously at repetition
rate up to ~1 MHz each

CW SRF driven facility can
have many FELs. Total
number of undulators set by
budget. Up to 16 not
unreasonable

Expansion potential to harder
X-rays with additional linac

sections



General WIFEL Design Philosophy

I_]].'IG Seed Bunchers
at 30 eV Mod 1
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= Modulators in a cascade are kept relatively short with little
exponential gain until the final stage.

= Number of cascades minimized by HHG seeding at short
wavelengths
= The short modulators provide a number of advantages
= The “fresh-bunch” technique not needed, since phase space
degradation minimized
= Allows the use of a single short, low-charge bunch.
= Lower charge has a major impact on cost/complexity
= For fixed gun/linac-current/RF power, more endstations
= Allows use of “blow out” ellipsoidal bunches with their
nice linear fields

Radiator

1.2 GW
.| 900 eV

| 0.8 m | | 2.0m |
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Harmonic cascade FELs amplify and upcon-
_ vert the coherent radiation from a seed laser
to a higher photon energy by manipulating

electron dynamics in an undulator. There are a variety of ways to achieve this, for example by choosing particular
harmonic ratios, by controlling exponential FEL gain in intermediate stages, by different combinations of electron
beam energy, undulator period, and field strength parameter, or by using a fresh-bunch approach or not. In this
work several of the alternatives are reviewed, and a method is chosen that provides stable output for a large
harmonic ratio and low noise amplification while requiring modest electron beam parameters.

Désiga ofthe Wisconsin FEL Seeded SoftX-Ray FEL Undulator Line

The seeded FEL performance of a num-
(MIT) J. Bisognano, M.  ber of Wisconsin FEL (WiFEL) undulator
bs, K. J. Kleman, R. A.  lines is described. The experimental design

requirements include coverage of a broad

wavelength range, rapid wavelength tuning,
variable polarization, and variable pulse energy. The beam parameters allow experiments ranging from those re-
quiring low peak power with high average spectral flux to those that need high peak power and short pulse lengths
in the femtosecond range. The FELs must also be stable in timing, power, and energy while satisfying constraints
on electron beam quality and fluctuations, undulator technologies, and seed laser capabilities. Modeling results
are presented that illustrate the design performance over the full wavelength range of the facility.
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L Beam Spreader

The microbunching gain of a free-electron
Wu (SLAC) laser (FEL) driver is affected by the beam

spreader that distributes bunches to the FEL
beam lines. For the Wisconsin FEL (WiFEL), analytic formulas and tracking simulations indicate that a beam
spreader design with a low value of R56 has little effect upon the gain.

Wisconsin FEL

The microbunching gain of the driver for the
Wu (SLAC) Wisconsin FEL (WIiFEL) is reduced by more

than an order of magnitude by using a sin-
gle-stage bunch compressor rather than a two-stage design. This allows compression of a bunch with lower energy
spread for improved FEL performance.
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Table 1: Out;;ut properties for each beamline tuned to highest photon energy
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BL1 BL2 BL3 BL4 BL5 BL6
Highest photon energy (eV) 40 180 250 290 750 900
Wavelength (nm) 31.0 6.9 2.3 2.3 1.65 1.37
Peak power (GW) 3.0 3.0 1.4 2.3 1.6 1.2
Photons per pulse 1.3e13 | 3.8e12 | 49e11 | 7.2e11 | 2.8e11 | 1.5e11
Pulse energy (uJ) 80 110 43 63 34 22
RMS pulse length (fs) 9.3 11.0 9.0 8.3 7.3 6.4
RMS bandwidth (meV) 43 60 102 93 110 128
Coherence length (fs) 41 35 22 24 19 16
Peak brilliance (p/s/0.1%/ mm2 mr2) 3.8e29 | 5.6e30 | 3.2e31 | 54e31 | 5.3e31 | 4.9e31
Avg brilliance (p/s/0.1%/ mm2mr2 at 1 MHz) | 3.5e21 | 6.2e22 | 2.9e23 | 4.4e23 | 3.9e23 | 3.1e23
Peak flux (photons/s) 5.0e26 | 1.1e26 | 2.1e25 | 3.0e25 | 1.3e25 | 8.1e24
|Avg. flux (photons/s at 1 MHz) 1.3e19 | 3.8e18 | 49e17 | 7.2e17 | 2.8e17 | 1.5e17
RMS source size (um) 89 42 42 44 36 33
RMS diffraction angle (urad) 44 20 4.7 4.5 3.9 3.6
M? 1.90 1.56 1.07 1.10 1.07 1.06
Wiaist location (m from undulator end) -14 -6.7 -8.2 -6.4 -6.8 -7.0
Rayleigh length (m) 2.0 2.1 8.8 9.6 9.2 9.1
10
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900 eV Time Distribution

Pulse shape at end of undulator (before any optics).
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FEL Electron Beam Requirements

Repetition frequency 5 MHz

| peak 1000 Amps
Normalized e1,,nqyerce <1 mm-mrad
Bunch length rms 70 fsec
Charge/bunch (derived) 200 pC

| average (derived) 1 mA
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Photoinjector

* Pursue low-frequency (200 MHz) superconducting RF
injector operating CW

» Operation in “self inflating” or “blow out” mode to produce
elliptical bunches

» Cleaner emittance compensation
« Smoother for compression

* Photocathode drive laser uses short (~30 fs) UV pulses
with transverse shaping. Electron bunch rapidly expands
to several picosecond bunchlength with ellipsoidal shape

* 1 kA at 1 mm-mrad ¢, and 104 energy spread
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Ellipsoidal bunch expansion
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Ellipsoidal bunch expansion
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Blow-Out Mode Smooths Initial Distribution
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"Conventional” Laser Systems at WiFEL

Microwave/Optical
Standard

Optical Master Oscillator
Mode-Locked Laser

S TTV N\

Timing Stabilized Optical Fiber Links

a

LN

Op-t-i-cal-to-R-l-'m"E Opttcal-to Optlcal Optmal-to—RF Optical-to- Optlcal Optlcal—toOptlcaI

Synchronization Synchronization | Synchronization Synchronization Synchronization !
Photo-Injector Low-Level RF

Klystron
y Laser Systems Seed Laser Probe Laser
High-Level RF
Systems
> fs X-ray
Electron Gun LINAC | Undulator " pulses

Sub-10 fs performance already demonstrated by Kim et al.:

Nature Photonics,

Published online: 2 November 2008; doi:10.1038/nphoton.2008.225
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Primary Laser R &D

UV seed laser

= Required pulse energy for UV seeding Is available commercially
today at kilohertz rep rates

= Cryogenically cooled nonlinear crystals to go from kHz to MHz
for UV

= Cryogenically cooled Yb:YAG amplifiers up to even three times
higher average power levels than needed currently developed at
MIT Lincoln Lab

XUV seed laser

= Required infrared pulse energy to produce the XUV pulse is
avallable today commercially at kilohertz rep rates

= To extend to MHz repetition rates, a key laser development effort
IS to show the application of cryogenic cooling to Yb:YLF and/or
Yh:Y2SiO5

= Goal Is to demonstrate such a laser system at the 100W power
level with scalablility to the multi-kW level

Robust tunability of HHG source by pulse shaping of the driver
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Ybﬁg?g;?;@;g?"m ~100ud, 30 fs, 1kHz,

2Waverage power tunable 680-1050 nm
SHGto 523 nm Unused | 1030nm, 1mJ
(BBO)

synchronization
’ unused

515nm, 500

Ti:sapphire laser ufse
tunable 680-1050nM, e ™
~5nJ. 30fs picker

Broadband
OPA (BBO)
2 stages
» ?%Jf-s SHG + 515nm
340-525 r{m or 1030nm
~ 50,
| 30-100fs
205=347nm
nm 21
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High-Harmonic Generation

Noble Gas Jet (He, Ne, Ar, Kr)

Pulse of 10 mJ XUV@ 3 -30 nm
@ 800 nm

When gaseous atoms are exposed to an intense
femtosecond laser field, the periodic modulation of the

electron motion produces high-order harmonics of the
laser frequency.

Courtesy Franz
Kaertner, MIT
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High Repetition Rate XUV-Seed Laser

Necessary HHG Efficiency Average power
XUV-Seed energy: @ 40 nm: n=10* 1kHz: 3W
300nd 3mJ pulse energy 1MHz: 3kW

100 mW Fiber Laser 30 fs | 10w Fiber Amplifier 30 fs Cry.ogenlcally.Coo_Ied 30 fs
1 MHz. 10 nJ 1 MHz, 10 pJ ———s{ YD:YLF or Yb:Y,SiO5 j—s

1 MHz, 3 mJ, 3 kW

Yb:YLF or Yb:Y,SIO:: novel broadband laser
materials emitting at 1um

Research plan is to demonstrate cryogenic operation
at 100 W level with scalability to 3 kW
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Wisconsin FEL

Superconducting L- band

. Undulators
electron linear accelerator //___—-=="‘-—'-""""==°
17 GeV 2.2 GeV A‘Q

S:RF - - % Experimental
unc Beam switchyard Areas

gun  compressors with RF separators ~Monochromators
l i ] L ] | | | | 1 | | | | |
0 100 200 300 400 500 600 700 m
Details www.wifel.wisc.edu
Contains Pre-conceptual design, Science Case,
R&D program, Papers, and Workshops
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