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Applications of Photon Activation
and Activation Analysis (PAA)
(with environmental implications)

Trace element analysis of waste streams,

Trace element analysis of environmental
samples (air, water/ice, soll/rock, biological),

Isotope Production and the avoidance of
nuclear waste,

‘Burnup’ of nuclear waste with ‘coupled’
accelerator-reactor systems.



Element Sensitivity ug
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The general principle
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e Why PAA?

e What are its advantages?

IS it practical?
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The Problem of Large Amounts

In chemical analysis
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The current “modern trends” in chemical analysis...
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Almost ignored, up to present:

The characterisation of large amounts / volumes of material



Example: electronic waste; catalysts
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Example: electronic waste in Germany
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Hazardous:

- Chromium
- Nickel

- Arsenic

- Bromine

- Cadmium
- Lead

- Bismuth

- etc.

Useful:

- Copper

- Selenium
- (PGE)

- Silver

- Indium

- Tin

- Gold

- etc.
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Precondition:

Analysis of large samples (5 g up to tens of kg
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Potentially Suitable analytical methods
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X-ray fluorescence analysis, continuous

Activation analysis

- with photons (PAA)
- with neutrons (NAA)
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PHOTON BEAM GEOMETRY vs. REACTOR GEOMETRY
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PHOTON BEAM GEOMETRY vs. REACTOR GEOMETRY

‘Particle consumption I

Thermal neutrons

Cold neutrons

or photons
O Linear (exponential) O Extrapolation from
interpolation possible “outside” to “inside*

Flux depression and self-shielding

O Matrix Z dependent © Strongly matrix dependent
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PHOTON BEAM GEOMETRY vs. REACTOR GEOMETRY

‘Flux gradientl

Cold neutrons
or photons

O lateral: high
axial: low

Thermal neutrons

O radial: high
circumferential: low

Example:

30 MeV bremsstrahlung

X, arbitrary units

Photon flu
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Ca. 18% flux decrease @ 4.5cm



THE SOLUTION: High Energy Photon Screen (HEPS)
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>XBAM ‘ High Energy Photon Screen (HEPS) I 6 .

End of beamline with x,y-scanning magnets
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‘ High Energy Photon Screen (HEPS)I 11 .

Copper sheet matrix
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9cm
—
0,976 1,008 0,992
1,000 1,000
Normalized %*Cu pulse
rates after a 1 hour
meander irradiation of 300
0,985 1,000 0,982 _
9cm mg Cu discs at 30 MeV
electron energy
0,983 0,996

0,956 0,992 0,976
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Areal homogeneity of the scanning
bremsstrahlung field

Autoradiographic approach
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>¢BAM__[High Eneray Photon screen (veps)] 15 [

Scanning photon beam

Monitor sheets
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Axial gradient of photon flux,
polynome fit
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‘Results ‘

| Contents, mg/kg (£ 1o, rel.%) |

Element PAA1 NAA?Z
Sodium% |4.8 (16) 4.6 (3.0
Calcium 652 (6) n.d.3
Titanium 183 (13) n.d.
Chromium | 31 (26) 48.8 (9.2)
Manganese] 151 (14) n.d.
Nickel 134 (20) n.d.
Copper%e |4.8 (9) 5.36 (8.3)
Zinc% 0.167 (16) 0.162 (3.8)
Zirconium | 971 (7) n.d.
Silver 14  (28) 25.7 (8.4)
Cadmium |87 (23) n.d.
Tin% 0.127 (5) 0.122 (35)
Antimony%]| 0.200 (8) 0.247 (1.1)
Barium% |4.15 (11) 45 (2)
Cerium% | 0.23 (16) 0.218 (2.8)
Gold n.d. 1.91 (2.1)
Lead% 0.107 (10) n.d.
Uranium 54 (13) n.d.
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lAverage out of 5
single samples @ 150 g

I °0One sample @ 1.22 kg

| 3n.d.: not detected




1o - Standard deviation, rel.-%
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‘Results ‘
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Conclusion

Large samples can be analysed

Significantly reduced working effort

Improved representativeness

BAM



Why use Photon Activation Methods?

Why Is it better or worse than reactor methods?

How does It work?

Is It practical?



Current reactor production technigue:

fission in a reactor produces a variety of isotopes (about 6% of
the time it makes 99Mo).

ne + 235U ) 99MO + Sn + X N° (= 6%)



PMTc — metastable Technetium-99

 Nice thing about Mo — it has a half life of
2.7 days and can be shipped around.

e |t decays to ®®™Tc which has a half life of 6
hours. This Is used on patients.
Approximately 1.6M North Americans per
month get a ‘treatment’.

o PIMT¢ is extracted from 2°Mo by “milking the

COW .



Problems with current technique

 High level waste

» Worldwide, 10’s of kilograms of (HEU) HLW waste each
year.

 Nuclear proliferation

» U.S. exports 15.5 kg of HEU (highly enriched uranium)
to Canada each year.

> 93% enrichment HEU made for nuclear warheads.

o Reliablility of supply
> 2007 supply crisis.
> Future problems importing radioactive materials.




(v,n) production technique

 Photon excites 1Mo nucleus.
e Knocks out a neutron leaving *°Mo.
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- 99MO + nO




In general, photons make proton rich isotopes
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(gamma, x) reactions efficiently populate moderately
proton-rich nuclei (and some neutron-rich nuclei)

(A plot showing the stable nuclides)
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Isotope Crude yield per 100 kW per week from 100g
targets at 50 MeV electron beam energy

F-18* 9 kCi/wk

Cu-64* 10 kCi/wk

Ba-131* 15 kCi/wk

Mo-99* 2 kCi/wk

In-111* 2 kCi/wk

Y-88* 6 Ci/wk

Se-75* 6 Ci/wk

* - Taken from measured yield at 2 kW using IAC linac and scaled by power, mass, isotopic
enrichment, geometric corrections, etc. Note that these rates are consistent with Segebade
et al. and the Mo0-99 estimates of TRIUMF.




In two words:

Specific Activity
(or lack thereof)

This Is the Achilles heel of Photon Activation.



So why hasn’t Photon Activation
been exploited?

Example: °°*Mo —

The maximum Specific Activity of °°Mo in a post-gamma-
irradiated pure %Mo target is in the 1-10 Ci/g range (see
Bennett, 1998 or TRIUMF, 2008).

But if one separates the %°Mo from a post-irradiated pure
100Mo target, the answer is very different. Advances in
materials science have enabled us to produce

better than 1 kCi/g specific activity of %°Mo.




1)

2)

Issues and Questions for Scale-up:

ISU experiments were done with 1-2 kW electron
beams and 1 g targets: scale-up to 100 g targets at
100 or more kW electron beams raises significant
guestions about heat transfer, efficiency of
separation, etc.

Costs, optimization, target designs, multi-isotope
production, FDA approvals, NRC licensing (of the
material, not the accelerators), and many others all
pose challenges.



1)

2)

3)

4)

5)

IF high specific activity can be produced from
Photon Activation, shouldn’t this be exploited?

Advantages:

No HEU, LEU or uranium of any kind =» no safeguards or proliferation
risks.

No HLW. And no major nuclear wastes of any kind.

No major decommissioning costs associated with accelerator facility
(when compared to reactor decommissioning costs).

Such a facility could simultaneously produce a large number of isotopes
that are currently in short supply.

Such a facility(s) would diversify isotope production, research and
education capacity and help insure a reliable supply.



Limiting ourselves to photon activation, for the
moment, what can we make?

Via (v, n): 64Cu, 26Al, 131Ba/131Cs, 88Y,
197Hg, 192Ir, 203Hg, 99Mo,
75Se, 11C, 13N, 150, 18F

Via (y, p): 67Cu, 47Sc, 177Lu, 90Y,
110mAg, 166Ho, 57Co, 775e

Via (v, 2n): 77Br, 67Ga, 7Be, 111In

Via (y, hp): 82mRb, 64Cu




Thank You.
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