

The European XFEL

a Management Challenge

What is management?

2

What is management?

Management is the act of bringing together people and resources for accomplishing a desired goal

It comprises planning, organising, staffing, directing and controlling an organisation

What is the European XFEL?

XFEL is a fascinating project

A scientific idea

A political idea

A prototype for decentralised projects

A management challenge

4

Introduction

3.4km

Introduction

_____ 3.4km _____

4

Introduction

3.4km

4

Introduction

4

Introduction

_____ 3.4km _____

Introduction

The Scientific Case

The ultra short (10-50 fs), highly coherent and brilliant XFEL light pulses allow:

Structure determination

Studying exotic states of matter (like in stellar gases)

Femto-Chemistry
-> Movies

(The light pulses are about 1000 x shorter & 10¹⁰ x more brilliant than at latest synchrotrons)

The International Context

Introduction

Currently there are worldwide 3 large X-ray FEL projects:

LCLS (Linac Coherent Light Source), SLAC, USA

-> 120 pulses/s

SCSS (Spring-8 Compact SASE Source), Spring-8, Japan

-> 60 pulses/s

LCLS and SCSS aim to be operational 2009/10

XFEL, DESY, Germany

-> 30.000 pulses/s (Superconducting Linac)

XFEL aims for 'first e-beam' in 2014 and 'ready for users' in 2015

FLASH (at DESY), already operating user-facility

- -> Sets standards for generating VUV and soft X-ray laser light
- -> Sets standards for the scientific exploitation of such radiation

—> ≈ 1/10 of XFEL

XFEL - The Political Idea

Introduction

The <u>primary</u> political idea is to launch a new way in Europe for establishing large-scale science projects (ESFRI roadmap)

14 Countries have decided to build jointly a new <u>international</u> research facility in Europe

It shall be owned the contributing countries:

- Limited Liability Company
- Countries will be shareholders
- Lasting rights & obligations
- Construction Cost ∑≈ 1G€
- In-kind & in-cash

The primary political idea is not to build a XFEL facility as fast and as cheap as possible -> Implications to be understood

Analysis

What needs to be considered for setting up an efficient running project

Prehistory & Status — Technical

XFEL (like practically all large projects) has a long prehistory

- Originating from the TESLA linear collider proposal
- Original TESLA technologies now optimised for XFEL
- Accelerator layout is further developed than the photon part
- R&D has been basically stopped Technologies cores regarded basically "mature"
- "Big" new ideas cannot be implemented anymore
- Mass production must be launched —> <u>Industrialisation!</u>
- Interfaces and lifecycle issues require now highest attention
- Implementing good QM and Logistics is crucial

Prehistory & Status -

Analysis

10

- Prepared by many small working groups and individual people
- Grown structures
- Common and diverting ideas —> what and how to realise
- Hard tested emotions and beliefs over the years
- New entities get involved -> new ideas, responsibilities must be given away, other methods must be accepted
- "High-Energy Community" shall become a "Photon Science Community"
- Important secondary objectives of stakeholders

Management as Discipline

Science is highly individuals-related, which is mostly good:

-> The best 'science brains' have often the best science ideas

"Science Management" is also very individuals-related, which is often not so good:

- -> The best 'science brains' become loaded with other issues than doing science
- -> Only few really love it and specialise in it
- —> Management is handled rather as a practice then as a discipline
- -> Steering and follow-up styles vary strongly

Decentralised Project

Analysis

XFEL - A prototype for decentralised projects

(presently 22 Institutes from 14 Counties)

Construction activities are highly distributed and strongly interlinked

Almost all project activities are joint activities of several institutes

There is no overdominant institution

Not even the European XFEL Company nor DESY

Organisational structure must be stand-alone and selfcontained

XFEL is almost like a high-energy physics experiment

The Management Challenge

Wrap-Up

- Demanding technologies must be integrated into a functioning facility
- A complex social situation must be converted into an enthusiastic & focused collaboration
- Individual steering and follow-up must become homogenous
 –> Based on roles and institutionalised processes
- A decentralised project must be made manageable

Synthesis

How does XFEL tackle its challenges?

Project Definition

Synthesis

Understand Complexity

Synthesis

Two stonecutters are working in a quarry.

Asked what they are doing one said:

"I am cutting stones."

Hidden Complexity

Is XFEL more complex – compared to earlier projects?

Number of components is not really higher, BUT:

- Technologies are higher integrated (software & hardware)
- More design optimisation —> 3D Modelling, Simulations, 3D Master Models, UML Models ...
- More legal regulations, more reporting
- More information is exchanged and <u>parallel processed</u>
- More decentralisation —> Increased organisational efforts
- More planning in the early project phases for the benefit of cost efficiency, less. change management with the grinding machine and enhanced reliability

'Things' have advanced & perform more -> but also demand more

Synthesis

XFEL applies "Systems Engineering" for the demanding cases

 Organisational ones: "Moderated Process Analysis" so far WP31-"Civil Construction", WP34-"Utilities"

18

Synthesis

XFEL applies "Systems Engil

1. Organisational ones: "
so far WP31-"Civil Constructio

Moderated by: WP40
'Information & Process Support''
(Project internal consultant)

Poster: TURFP057

g cases sis''

18

Synthesis

XFEL applies "Systems Engil

 Organisational ones : " so far WP31-"Civil Constructio Moderated by: WP40
'Information & Process Support''
(Project internal consultant)

Poster: TURFP057

g cases sis''

Synthesis

XFEL applies "Systems Engineering" for the demanding cases

2. Technical ones: "System Modelling"

so far WP02-"LLRF" with external consultant:

"Fraunhofer Institute for Experimental Software/Systems Engineering" (IESE)

XFEL applies "Systems Engineering" for the demanding cases

2. Technical ones: "System Modelling"

so far WP02-"LLRF" with external consultant:

"Fraunhofer Institute for Experimental Software/Systems Engineering" (IESE)

Synthesis

XFEL applies "Systems Engineering" for the demanding cases

3. Collaboration wide issues: CDE-Workshops (Collaborative Design Effort)

(1st CDE-WS on 23 & 24 Sep. 2008 – Collaborative Design Processes) (2nd CDE-WS on 12 & 13 May 2009 – Technical Reviews Procedures)

3D CAD Topics in Distributed Environments

Where the control of th

Concepts
Presentations

Cryogenics

Warm e-Beamlines

Cold Linac

Adaptations

Action Steps

Poster: TU5RFP058

Manage Complexity

XFEL is on its way to merge 2 concepts

- Principle of Subsidiarity
- Institutionalised Follow-Up

Principle of Subsidiarity

esis

2

"Matters ought to be handled by the smallest, lowest or least centralized competent authority!"

Only relevant issues shall be brought to the attention of the Project Management – Less relevant issues shall be handled by 'lower' entities. –> Applying the PoS offers best usage of capabilities and resources

BUT it requires <u>pre-defined</u> areas of responsibility, which are based on a <u>comprehensive roles model</u> – WITH established roles, interfaces and processes (–> escalation criteria)

-> And then the respective decision empowerments must be granted and lived (-> roles & process compliance)

Synthesis

Project Follow-Up – A Feedback Circuit – Understand the 'Roles'

24

Important issues that need follow-up (among others)

- Technical advancement
- Pending issues
- Risks
- Requirements compliance
- Standards compliance
- Schedule compliance
- Resources usage
- Process compliance

Institutionalised Controlling Means (basically)

Quality Management: Structures and provides necessary decision criteria

(defines how things shall be done)

Reports: Examine and monitor the general progress at regular intervals

Reviews: Examine readiness for/at crucial project phase transitions

Audits: Verify (on-site) compliance and effectiveness of quality

management or other processes (target/actual comparison)

Change Management: Handles the exceptional issues

Handles pending issues & brings them up at regular intervals Issues Tracking

Risk Management Identifies, monitors and helps to limit risks

To be understood as main steering instruments

Synthesis

Non-Institutionalised Controlling Means

Personal Interactions: Feel the pulse within the collaboration, give personal

acknowledgement and are a /the 'lubricant'.

Personal interactions are essential. They complement but do

not substitute institutionalised means.

The bulk of problems/deviations is to be handled via institutionalised paths/processes!

Example 1: Project Structure

Synthesis

TDR (2006): List of Work Packages – but not a real/complete WBS

WPG-1: LINAC	WPG-2: Accelerator Sub-Systems	WPG-3: Photon Beam Systems	WPG-4: Control and Operation	WPG-5: Infrastructure	WPG-6: Sites and Buildings
WP-01* RF System	WP-12* Warm Magnets	W/P-71 Undulators	WP-28 Acc. Control System	WP-10* AMTE	WP-31 Site & Civil Constr.
WP-02* Low Level RF	WP-14° Injector	WP-74 X-Ray Diagnostics	WP-29* Operability & Reliability	WP-13* Oyogenics	W/P-41/42/43 Site Lot 1-3
W/P-03* Acc. Modules	WP-15° Bunch Compression	WP-75 Detector Development	WP-35 Radiation Safety	WP-32* Survey & Alignment	WP-44 Site Engineering
WP-04* S.C. Cavities	WP-16* Lattice	WP-76 DAQ & Control	WP-36 General Safety	WP-33* Tunnel Installation	WP-45 AMTF Hall
WP-05° Power Couplers	WP-17* Stand.Diagnostics	WP-79 Sample Environment	WP-38 Personnel Interlock	WP-34* Utilities	
HOM Couplers	WP-18* Special Diagnostics	WP-85 Scientinstr. SQS	WP-39* EMC	WP-40* #PS	
WP-07* Frequency Tuners	WP-19* Warm Vacuum	WP-86 Scientinstr. SCS			
W/P-08* Cold Vacuum	WP-20° Beam Dumps	WP-73 X-Ray Optics & Peam Transport			
WVP-09* Cavity StringAssem.	WP-21 FEL Concepts	WP-78 Optical Lasers			
WP-11* Cold Magnets		WP-81 Scientinstr. FDE			
WP-46* 3.9 GHz System		WP-82 ScientInstr. HED			
		WP-83 Scient InstrMID			
		WP-84 Scientinstr. SPB			

Example 1: Project Structure

Synthesis

Now (Apr. 09): High Level WBS – which includes all lateral functions and serves also as project organigram

Example 1: Project Structure

Synthesis Z

Now (Apr. 09): High Level WBS – which includes all lateral functions and serves also as project organiaram

Tasks mandate:

- 'Systems Integration' coordinates the global installation planning and supervision, i.e. the integration of WP deliverables, resp. of subsystems into a working XFEL facility
- 'Common Issues Coordination' coordinates those technical issues that are strongly connected to WPs' core responsibilities but do concern more than one WP likewise
- 'Work Package Support' help WPs resolving particular technical or organisational problems that can't be resolved WP internally

A Cross-Structural Function

Synthesis

Tasks mandate:

- 'Systems Integration' coordinates the global installation planning and supervision, i.e. the integration of WP deliverables, resp. of subsystems into a working XFEL facility
- 'Common Issues Coordination' coordinates those technical issues that are strongly connected to WPs' core responsibilities but do concern more than one WP likewise
- 'Work Package Support' help WPs resolving particular technical or organisational problems that can't be resolved WP internally

A Cross-Structural Function

sis 2

Tasks mandate:

- 'Systems Integration' coordinates the global installation planning and supervision, i.e. the integration of WP deliverables, resp. of subsystems into a working XFEL facility
- 'Common Issues Coordination' coordinates those technical issues that are strongly connected to WPs' core responsibilities but do concern more than one WP likewise
- 'Work Package Support' help WPs resolving particular technical or organisational problems that can't be resolved WP internally

28

Tasks mandate:

- 'Systems Integration' coordinates the global installation planning and supervision, i.e. the integration of WP deliverables, resp. of subsystems into a working XFEL facility
- 'Common Issues Coordination' coordinates those technical issues that are strongly connected to WPs' core responsibilities but do concern more than one WP likewise
- 'Work Package Support' help WPs resolving particular technical or organisational problems that can't be resolved WP internally

Synthesis

Synthesis

Summary: Key Messages

- Understand & reveal complexity
- Identify/define the Work Breakdown Structure (WBS)
- Establish an organisational structure based on roles & 'Principle of Subsidiarity'
- Institutionalise communication & project follow-Up
- Establish 'Total Quality Management'
- Develop methods and skills (i.e. people)
- Pre-define verifiable results for each activity

Summary: Key Messages

- Understand & reveal complexity
- Identify/define the Work Breakdown Structure (WBS)
- Establish an organisational structure based on roles & 'Principle of Subsidiarity
- Institutionalise communication & project follow-Up
- Establish 'Total Quality Management'
- Develop n ethods and skills (i.e. people)
- Pre-terine verificate results for each activity

