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High gradient induction linacs 
are possible for short pulses 

•  Dielectric wall accelerator (DWA) 
–  Early concepts 
–  High gradient possibilities 
–  Component status 

•  Issues with the current approach 
•  New architecture concept 
•  Summary 
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An early dielectric wall 
accelerator concept* 

*A. I.  Pavlovski, et. al. Sov. At. En. 28, 549 (1970) 

40 MeV, 100 kA, 25 nsec* 

LIU 30  
Sarov, Russia 

Gradient ≈ 1 MV/m 
*Courtesy of Anatoly Krasnykh, SLAC 

Coreless induction accelerator 
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* U. S. Patent No. 6,331,194 

Kapton 
Leopold, et. al., IEEE 

Trans. Diel. and 
Elec. Ins. 12, (3) pg. 

530 (2005) 

HGI structure forms a periodic electrostatic 
focusing system for low energy electrons 

Closely spaced conductors inhibit the breakdown process 
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All DWA configurations employ parallel plate transmission lines
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Typical current flow in the line with a gradient E 

conductors 
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* Patent pending 

SiC offers the potential of high voltage, high current operation at 
elevated temperature with long lifetime and low jitter 

SiC
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HGI characteristics imply that 
the highest gradients will be 

attained for the shortest pulses


*patent pending
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A high on-axis 
gradient is 
maintained as 
long as 
This implies 
pulses in the 
range of a 
fraction to 
several ns 

DWA can be used in the single pulse 
“traveling wave" mode to accelerate 
any charged particle* 

Along the wall  

Ez(wall) 

HGI 
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* Patents pending 

Optical fiber 
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system” 
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Spark sources 

F.A.S.T. was built to test components 
in an integrated system 

HGI 7 “Blumleins” 

Flashboard cathode 
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Initial tests used F.A.S.T. as an 
electron diode 



Beam

Research Program


Lawrence Livermore National Laboratory


10 

Proton injector and F.A.S.T. 
accelerator section 

5-Induction 
cells 

Vacuum 
pump 

Thomson 
spectrometer 

Spectrometer 
& camera 

Laser line of sight 

Spark sources 



Beam

Research Program


Lawrence Livermore National Laboratory


11 

F.A.S.T. acceleration of protons 
is measured with spectrometer 

H+ C++ H2
+ or D+ 

Accel. 
phase 

Decel. 
phase 

OFF 

Energy 
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Signal proportional to 
F.A.S.T. voltage 
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Typical Trace 

At Failure 

4 cm x 56 cm x 0.8mm gap between electrodes 

Failure point 

Cast dielectric sustains interesting 
field levels in relevant configurations 
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New SiC material fails at 
enhanced stress > 200 MV/m 

SiC 

electrode 

oil 
solder 

Failure of 3 Blumlein switches 
at > 30 kV 

Failures occur at electrode 
edges where computed field is 

> 200 MV/m 

10 mm x 10 mm x 1mm 
Average stress > 30 MV/m 

Present work is focused on 
developing an integrated 

switch package that eliminates 
these enhancements 

Intrinsic breakdown 
field for pure material 
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Stacked Blumleins are subject to 
parasitic coupling 

Z
0 

Z
0 

Z
0 /2 

Z
0 /2 

Switch 

Radial lines 
completely 

isolate adjacent 
layers but have a 

very low 
impedance (sub- 
Ohm), requiring 

massive currents 
to support high 

gradients 

C L 

Stripline impedances can be tens of Ohms, 
~ kA currents 

V 
t 

Ideal stack output voltage 

Output including parasitic coupling 

Magnetic field lines close through adjacent 
layers, inducing currents in neighboring lines 

tenths of Ohms, ~ 
100 kA currents 
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Classical bipotential lens can be 
used to accelerate particles 

V 

conductor 
conductor 
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If we could move the lens at the 
correct speed, a particle could be 
continuously accelerated 

V 

conductor 
conductor 

Move lens with speed u 
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Move the lens without moving the 
assembly - a moving virtual gap* 

V 

Low conductivity 
material 

High conductivity 
material u 

High conductivity 
material 

V 

0 

Move this region at speed u 

•  Need a material whose conductivity can be rapidly changed from a high 
conductivity state to a low conductivity state and back again 

* Patent pending 

Voltage is concentrated 
into a small gap 
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One way to do this is with 
photoconductivity* 

V 

SiC not 
illuminated 

Illuminated SiC u 
Illuminated SiC 

•  Need a material whose conductivity can be rapidly changed from a high 
conductivity state to a low conductivity state and back again 

V 

0 

Move this region at speed u 

Voltage drop occurs across 
high resistivity region 

Laser light 

* Patent pending 
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Induction machines have been used 
for decades to concentrate voltage 

Inductive voltage adders are induction concentrators 

Induction cells gap 

Typical electron injector 
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C L 
gap region a 

l 
Photoconductive 

switch 

Virtual gap* is 
created by 
shutting off 

photoconductive 
switches 

Induction 
cells 

To what extent can this be 
achieved dynamically? 

i 

* Patent pending 

w solenoid 
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Continuous model for moving 
virtual gap* 

Transmission line equations                   Acceleration field 

Define dimensionless variables 

u (w) is speed (width) of the 
virtual gap 

* Patent pending 
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Seek a traveling wave (similarity) 
solution for a long system 

There are two distinct regimes*: 

LCu2 < 1 “subluminal” 

LCu2 > 1 “superluminal” 

* Patent pending 
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Idealized solutions for constant 
accelerating field (subluminal) 
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Idealized solutions for constant 
accelerating field (superluminal) 
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3D EM simulations 
(XFDTD)verify the effect* 
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* Patent pending 
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C L 
gap region a 

l 

w 
Photoconductive 

switch 
Magnetic cores 

Induction 
cells 

Magnetic cores can enable the 
“superluminal” regime* 

i 

* Patent pending 
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A circuit dual exists using a 
helical inner conductor* 

C L 

gap region a 
l 

w 

Virtual gap* is created by shutting off photoconductive switches 

Induction 
cells 

helix 

* Patent pending 
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Traveling wave and finite length 
system solutions are similar 

Traveling wave solution 

Finite length solution 
Charging phase 
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Summary 

•  Key material strengths look to be consistent with 
100 MV/m gradients for short pulses 

•  Near term goals 
•  Improve switch material 
•  Develop integrated switch package 
•  Add focusing to injector and characterize 

•  Source lifetime and repeatability 
•  Beam quality 

•  New, “moving virtual gap” architecture idea to 
overcome parasitic effects 


