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Outline

Beam requirements
Method: bunching and transverse focusing
Beam diagnostics

Recent progress:
~ | longitudinal phase space measured

— | simultaneous transverse focusing and longitudinal
compression

— enhanced plasma density in the path of the beam
Next steps toward higher beam intensity & target experiments

greater axial compression via a longer-duration velocity
ramp

time-dependent focusing elements to correct chromatic
aberrations
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Explore warm dense matter (high energy density)

physics by heating targets uniformly with heavy ion
‘beams

Near term, NDCX-1: planar targets predicted to ;(;Z) . —
reach T = 0.2 eV for two-phase studies.

Tin
- T, ax =024 €V
at t=6 ns

B
Assumptions for Hydra simulation: -
E = 350 keV, K, : 1
lpeam = 1 A (40X compression) em) |

toeam = 2ns FWHM
Foeam = 0-5 mm, € = 0.1 J/cm?

Etotal =0'8 m"’! Qbeam= 2.3 I'IC S
0.2 rem) 0.2

Later, for uniformity, experiments at the Bragg peak using Lithium ions

Energy AN
lossrate | ¢ | “
|S: B s Tan L| @ 0.1 - 0.4 MeV/amu = NDCX Il (planned )
1 dE (Bra% g peak)
- K @ 0.003 - 0.009 MeV/amu = NDCX |

5 Bces
Z°dX ot (nuc]ear stopping plateau)

Mevimgem) | \ __
B X S B R (dEdX figure from L.C Northcliffe
and R.F.Schilling, Nuclear Data Tables,
Energy/lon mass (MeV/amu) A7, 233 (1970))
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Approach: High-intensity in a short pulse via
beam bunching and transverse focusing

The time-dependent velocity ramp, v(t), that compresses the beam at
a downstream distance L. v(0)

Velocity ramp. v(t) = (1-v(0)t/L)
Inductilon bunching module (IBM) voltage waveform:
V(t) = 5 mv’(t) - ¢, , (e, = ion kinetic energy.)

IBM voltage waveform Measured AE of injected beam:
80 Model vs experiment - 8 adequate for ~ns bunches.
60 6 I§5nergy analyzer, unbunched beam
5 h
40 4 30
S = 0 L |2kT,
> 2
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S // = [ ‘
o L g 10
s 20 | 2 2 /R
3 / s |
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-60 \/ -6 Energy (keV)
ol . WEM[ el [ 030
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T, eV 2.6E-02
Time delay (psec) /ﬁ\l
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NDCX-1 has demonstrated simultaneous transverse focusing and
longitudinal compression

K* injector
E = 280-350 keV oy FEPS 8 T Solenoid
| =26-37 mA Beam
- diag. #1 Target chamber and
- beam diagnostics

Matching solenoids
1 & dipoles

o

Objectives: Preservation of low
emittance, plasma column with n, > n,,
(e,; = 0.07 mm-mrad, ny_it= 10° /lcm3
Npmax = 1012/cm3 now, later, = 1013 /cm3)
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Neutralized Drift Compression Experiment (NDCX) with new
steering dipoles, target chamber, more diagnostics and
raded plasma sources

FEPS = ferro-electric plasma source
FCAPS = filtered cathodic-arc plasma sources

— Jnjegtor Matchlng solenoids IBM = induction bunching module

& dipoles,

kg™ \ ABM & FEps Target chaMBer
478 | baam -

y - %dl%ggostlcs |
APS‘_

\" [~ redd / > _. g O
TOCJSiR?S poid &

-

S

Bea d|ag n e
‘il

New: steering dipoles, focusing solenoid (8T),
target chamber, more diagnostics, upgraded plasma sources
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Beam diagnostics - improved Fast Faraday Cup:
lower noise and easier to modify

Requirements:

Fast time response (~1 ns)

Immunity from background neutralizing plasma
Design:

2 hole plates, closely spaced for fast response.

Hole pitch (1 mm) & diameter (0.23, 0.46 mm) small —
blocks most of the plasma

= Metal enclosure for shielding.

= Easier alignment of front hole plate to middle
(bias) hole plate.

= Design enables variation of gaps between hole
plates, and hole plate transparency.

zoomed
view

::::Z bias plate
f iolledor

Front plate

oy
2] -150<V<-50

50<V<-150




Beam diagnostics In the target chamber:
Fast faraday cup

window
Example waveform
40.0
2.5GS/s
35.0 Compressed
30.0 — Suppressor Peak
— Collector
z 250
£ 20
w
& 150 Background
3 zero’ed and
5 10.0 linear tilt Uncompressed
S 50 removed head
0.0 |

50 3 5.5

-10.0
070808131619 Time (usec)

= -1
Ibeam - Icollector X (tranSParenCY)
=35 mA x 44 = 1.5 A peak.
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Beam diagnostics In the target chamber:
scintillator + CCD or streak camera, photodiode

Al, O, wafer with hole plate:

s«Hole plate to

window | O reduce beam flux: less damage
1 1 prevent charge buildup.

E:: / Image intensified CCD camera

using 2 < At <500 ns gate.

(01 PI-MAX CCD camera

10ns gate

V- Optical fiber ’

~  Streak camera

10-20 pixels/mm typ.

—  photodiode




Simultaneous longitudinal compression and
transverse focusing, compared to simulation.

XvsZ

0.10

{ Net defocusing in gap due to energy change, E, }
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10ns gate

Uncompressed
300
Higher plasma density
250 | near the focal plane.
{ 5 Tesla --> 8 Tesla final
- focusing solenoid.
§ 200
e
3 150 2nsfwhm—p| |
> 400 ps slices
9 100
78]
)
=
’ . Wr’/ \/\A
W
-50
4.80 4.81 4.82 4.83 4.84 4.85
Delay (us)
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LSP simulation of drift compression

t = 1500, ns

number/cu—cm(log)

12.00 density (speciest,cell) at Th=0.0000
20 T v v [ T T T

11.40

10.80

10.20

9.600

.000

5.400

7.800

7.200

©.600 360 380 400 420
6.000 Z {em)

“\Sargashdalevist:integroted _8T\notilt_8T_—3kg\tilt_applasma_\smovie/C.pd
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With the new bunching module, the voltage amplitude and
voltage ramp duration can be increased.

150 |

100 _ — L=2.88 m

i —L=1.44m
50 \\

E i \
> 0
s : \
) i
g =0 \ \
-100 - | | | N
150 — b e ‘ : :
0 01 0.2 0.3 0.4 0.5 0.6
Time (us)

12 --> 20 induction cores
--> higher AVAt

FEPS = ferro-electric plasma source



It is advantageous to lengthen the drift compression section
by 1.44 m via extension of the ferro-electric plasma source

: :

2.24 m
Ferroelectric plasma source

New plasma source

~2x longer drift compression section (L=2.88 m), Uses additional volt-
seconds for a longer ramp and to limit AV ., & chromatic effects
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Ferro-electric plasma sources for neutralized drift compression
(PPPL).

t= 85C0. ns
{R—Th} F. source n_p (Log scale) <2 holes>
4

nomber feu—cm
1032

Ferro-electric plasma source

(FEPS) barium titanat .
Generated from cylindrical ceramic ring.

surface
Installed downstream of IBM
n,=2-8 x 10" cm-

New FEPS module prior to installation.
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Commissioned new IBM and extended FEPS plasma source.

IBM 20 independent 50%-Ni, ” I
50%-Fe (Astron) cores. “ /\ ,
. . s =
Waveform stacking efficiency s 2 // il 2 £
[Ves in full range| g N //’ﬂ ° &
nnet - . . = 56% 2 o0 ‘ 2 i
‘V‘s in single core‘xNCOres S
-40 + -4
due to partial cancellation from 60 6
[l L] ] [l '80 aaaaaaa ‘ _8
cores driven with opposite polarity \ p - s . o5
. Time delay (usec)
In the target chamber: With the 5
= 2700mA
new IBM/FEPS: ~2 x more ion 2500 || —
beam charge in a compressed 220w Eo % - F azt
. - | ¥ s arada
pulse than the previous : s 4
IBM/FEPS. N [t
2 500 Qe 9nC
u = L J
Still tuning up the system. : RTereaan. —
-500-1 0 1 2 3 4 5 6
Time (us)
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The improved filtered cathodic arc plasma source (FCAPS)
injection has led to a higher plasma density near the target

Target chamber

o

Plasma density
= *\ Ia arces > 1013 I cm3 after

modifications
| ¢ to FCAPS:
Beam axis g . .
: ,, | straight filters,
st Ao [FISGI="H] 2 --> 4 sources,
R I incr I
View port o - creased discharge
L'&\\\‘-. SN Target plane
= S50
1.0E+14 E 40 ig-
} ——n(plasma), B=8T | ;g 30+
Plasma density —e- n(plasma), B=0 § ,3 ig
1.0E413 < ——n(beam), B=8 T, LSP y=1.47cm *;\A“’m ; I
~r -2 3em 0.14cm > 6em
E 3
U )
<
éJ .OE+12 |
2 1
3 beam density,
a | 5.1cm 7.6cm 10.1cm
1.0E+11 < I Target 5°
| 40
I plane ’ 30
20
v ] 10 ‘—
1.0E+10 0
-5 0 5 10 15 20 25

17.6cm

7 (cm) 15.1cm
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PIC simulation of injection from Cathodic-Arc
Plasma Sources confirm experiment measurements

T | 1 | I T T T | I T T T 1 T

s . . 3
To provide more elecirons at " 3-D Warp simulation of plasma injection #%czm
larger R in the solenoid: ool from four FCAPS. -
L 1B 1011
Hexcel grid, self supporting 1010

oS

| , eddy currents

modify B

t=1.0us t = 2.0us
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Calculations support a longer IBM waveform
with twice the drift compression length

20

-
()

IBM

Velocity ramp

I
v

8 T solenoid

Beam Envelope Plot: 8TFF 300keV 400ns

(Number of data points: 12)

i

FCAPS plasma

L

259 keV —

3
¢ \—T
w \
=2
° ¢ —
g1 etraps . /
£
g : . ) ‘
0 5l Dl'lfi compression in Ferro-eledrlc plusmu source || 357
keV]
0
284 310 539 549 559 572
l ngth (r-m)
initial pulse
kinetic Current (width @
FF energy a(z=284) a' at focus | focus | E(J/cm2) | E (J/cm2) | E (J/cm2)
(T) | t(ns) (keV) (mm) (mrad) (Amps) (ns) envelope LSP2 (Eq. 1)
a)| O 200 300 21.50 -23.80 3.08 1.69 0.06
b)| 8 282 300 9.55 -9.82 4.01 1.83 0.39 0.30 0.59
I_> c)| 8 400 300 14.40 -13.70 3.23 3.22 0.82 0.69 0.94

Comparison of LSP, the envelope-slice model, and the simple analytic model.
(a) no final focusing solenoid.

(b) New IBM, the final focusing solenoid (B

max

= 8 Tesla) L, =144 cm, initial setup

(c) with twice the drift compression length (L=288 cm) as the present setup.
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A time dependent Einzel lens to correct the
chromatic aberrations

301.7 cm 286.8 cm /
D — >« Target
Emitter 25.3 cm chamber
Suppression electrodes Goar o [ ] 2231 cm >
and aperture —3 i 77 FEPS i
nyp et [ = MLea BINE ==
: e """"m"m. Gate valve !
Extractor plate ~ Dipole magnets j IBMgap . IBM cores FFS " FCAPS AV _ qr dV(t)
Einzel lens r 2IIlV2 dt
Z0
r A
0 %4 0 1% 0 Biases ~
AV = 60 kV Ar'(t) and Energy(t)
o poam 30.0 370.00
1 R Tr time-dependent focusing kick
L : gl (thin lens approximation.) 35000
]t ¢ t =3.75 cm
{=3.75 ~ 10.0 330.00 ~
z=0 Washers z=L=15¢cm = %
E 310.00 é
L Unipolar, 3 plates = ' 3
£ on axis potl < 100 N 200,00 =
= Green = Energy vs. time
306 N P Blue =r’(t)
S o | =0 Pon Red =r’(t) corresponding to the 270.00
= ol Einzel voltage waveform
Rf 02 r -30.0 250.00
|D\ 00 i i i i 10 110 210 310
% -10 -5 0 5 [ } 10 15 20 25 Tlmt‘ (ns)
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First target experiments: Prepulse heats thin foils to
3000-4000 K, additional heating by bunched beam.

Scintillator New target
Beam Intensity Distribution

manipulator: target
shot rep rate

P increased:

1/day --> several/h

From fast optical pyrometer data: thin gold and carbon
foil targets are heated to 3000-4000 K by the portion
of the uncompressed beam (1 us) that precedes the
bunched beam. Additional heating from the
bunched beam has been detected.
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The beam characteristics are now satisfactory for
target diagnostic commissioning and first target
experiments

Energy spread of initial beam is low (130 eV / 0.3 MeV =4 x 10#)
--> good for sub ns bunches.

Simultaneous axial compression (=50x) to 1.5 A and 2.5 ns
Beam diagnostics

enhanced plasma density in the path of the beam

PIC simulations of plasma and beam dynamics

Greater axial compression via a longer velocity ramp while
keeping Avl/v fixed.

Next steps: time-dependent focusing elements to correct
considerable chromatic aberrations
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backup slides
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Alignment: Beam centroid corrections are required to minimize
aberrations in IBM gap & for beam position control at the target
plane

Alignment survey: mechanical structure aligned within 1 mm.
Manufacturing imperfections (coil w.r.t support structure) not included.

Observe <5 mm, <10 mrad offsets at exit of 4 solenoid matching
section without steering dipole correction.

We can correct the centroid empirically with steering dipoles at
the exit of the solenoid matching section.

Y dipole
(inside)

=PPPL.



45 degree view -- zoomed field lines only




The WDM regime is at the meeting point of several distinct
physical regimes -- a scientifically rich area of HEDP

From R. More, Warm Dense Matter School,

3) Low-’
(%) Low-T plasma Berkeley Lab, January 2008.

“strongly coupled

(4) Superdense matter

shock release _
k Unknown properties:
EOS (p(p,T), E(p,T))

Liquid-vapor boundary
/ - Latent heat of evap.
Evaporation rate

(2) Dense Chsmlstry \?Vlg::(;'-ﬁ r:(e:?izir?n

temperature -

detonation smﬂnce Electrical conductivity

/ | (1) Hot solid /liquid - - dE/dX for hot targets

High-T condensed matter .
> Phenomena:

density Metal-insulator transition
Phase transitions?
Plasma composition?

Interesting phenomena at: 0.01 p_ ;i < p < 1.0 Pggjig
and 0.1eV<T<10eV
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Accelerators have several advantages for generating
warm dense matter

Precise control of energy deposition and ability to measure
ion beam after exit

Sample size large compared to diagnostic resolution
volumes (~ 1's to 10's u thick by ~ 1 mm diameter)

Uniform energy deposition (<~ 5%)

Able to heat any target material (conductors, insulators,
foams, powders, ...)

A benign environment for diagnostics

High repetition rates (10/hour to 1/second)
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