

Status of the Hadron Therapy Centers at Heidelberg (HIT) and Pavia (CNAO)

Thomas Haberer
Heidelberg Ion Therapy Center

Outline

- Rationale
- Standard approach
- Advanced approach
- GSI pilot project
- HIT
- CNAO
- Outlook

Rationale / Physics

Rationale / Radiobiology

different ions and tissues

Medulloblastoma

conventional

charged particles

Target dose 32 Gy/GyE

22 Gy 18 Gy 20 Gy Dose comparison bone marrow heart intestinal

< 1 GyE <.5 GyE <.5 GyE

Dose Delivery Concept @ GSI/HIT

Idea:

Dose distributions of utmost tumor conformity can be produced by superimposing many thousands Bragg-peaks in 3D.

Sophisticated requirements concerning the beam delivery system, the accelerator, the treatment planning, QA, ... result from this approach.

Realization:

Dissect the treatment volume into thousands of voxels. Use small pencil beams with a spatial resolution of a few mm to fill each voxel with a precalculated amount of stopping particles taking into account the underlying physical and biological interactions.

⇒ Extreme intensity modulation via rasterscanning

Scanned Carbon vs. Intensity Modulated Photons

scanned carbon 3 fields

reduced integral dose steeper dose gradients less fields increased biological effectiveness

intensity modulated photons 9 fields

courtesy O. Jäkel, HIT

Key Developments @ GSI

- Scanning-ready pencil beam library (25.000 combinations):
 253 energies (1mm range steps) x 7 spot sizes x 15 intensity steps
- Rasterscan method incl. approved controls and safety
- Beammonitors follow the scanned beams (v <= 40 m/s) in real-time
- Biological interactionmodel (LEM) based on 25 years of radiobiological research
- Physical beam transportmodel
- Planningsystem TRiP
- In-beam Positron Emission Tomography
- QA system
- Prototype of the scanning ion gantry

The Next Generation: HIT + CNAO

- combined Proton (low-LET) / Carbon (high-LET) facilities
- linac / synchrotron systems provide pencil beam libraries for highly tumour-conform scanning beam dose delivery

fondazione CNAO

Heidelberg Ion Therapy Center

- compact design
- full clinical integration
- rasterscanning only
- low-LET modality: Protons (later He)
- high-LET modality: Carbon (Oxygen)
- ion selection within minutes
- world-wide first scanning ion gantry
- > 1000 patients/year> 15.000 fractions/year
- integrated R+Dinfrastructure

Some Facts

• Effective area 5.027 m²

• Concrete 30.000 tons

Constructional steel 7.500 tons

• Capital Investment 106 M€

Start of construction: November 2003
Completion of building and acc.: June 2006
Accelerator settings established: April 2008
First patient planned: 2nd half of 2009

Project Partners:

- University pays, owns and operates the facility
- GSI designed the center and has built and commissioned the accelerator, trained a core team...
- Siemens supplies all components related to patient environment
- GSI, DKFZ, Siemens ... are research partners

Some Facts

• Effective area 5.027 m²

• Concrete 30.000 tons

Constructional steel 7.500 tons

• Capital Investment 106 M€

Start of construction: November 2003
Completion of building and acc.: June 2006
Accelerator settings established: April 2008
First patient planned: 2nd half of 2009

Project Partners:

- University pays, owns and operates the facility
- GSI designed the center and has built and commissioned the accelerator, trained a core team...
- Siemens supplies all components related to patient environment
- GSI, DKFZ, Siemens ... are research partners

IMPT → Beam Scanning

pencil beam library:

ions
 p ³He²⁺ ¹²C⁶ ¹⁶O⁸⁺
 energies (MeV/u)
 48 72 88 102
 (255 steps,1.0/1.5 mm)
 -220 -330 -430 -430

beam spot size : 4 – 10 (20) mm, 2d-gaussian
 (4 (6) steps) : (up to 20 mm for moving organ treatments)

intensity variation: chopper system in front of the RFQ, variation factor: 1000

active energy variation: in the synchrotron + high-energy beam lines

beam size variation: quads directly in front of the scanning systems

beam extraction: established RF-knock-out method (Himac > 10 years) gives

high stability in time, position and spot size

extraction switchable at flat-top level

HIT / Linac

compact design

proven technology

 fast change of the ion species

fast intensity variation (1000-times)

constant
 beam parameter

RFQ

Ion source

Injector

RFQ + IH-DTL

Th. Haberer, Heidelberg Ion Therapy Ce

HIT / Synchrotron

compact design

proven technology

multiturninjection => high intensities

 rasterscanning optimized, extremely flexible beam extraction

 fast variation of energy (range)

Motivation Gantry

Advantage of a rotating beamline

Pancreas, supine position via gantry advantageous

Scanning Ion Gantry

- optimum dose application
- world-wide first ion gantry
- world-wide first integration of beam scanning
- 13m diameter
 25m length
 600to overall weight
 0,5mm max.
 deformation
- prototype segment tested at GSI

Mounting

Gantry / Medtech

Patient Gantry Room November 2007

Tilt floor, pending on Gantry position Nozzle

Bumber mats

Patienttable, Roboter

Synchroton/HEBT Commissioning

■ 1. Turn in Synchrotron: Febr. 2007

■ 1. Beam in Cave: March 2007

Status of pencilbeam libraries

treatment quality since April 2008

Beam Stability

MWPC in beam line (C, 250 MeV/u, one interruption)

Treatment monitoring system (C, 250 MeV/u, no interruption)

- Excellent stability of beam size and position at treatment place due to KO extraction (constant optics)
- No profile distortions due to spill interruptions
 - → Very homogeneous lateral dose distributions

Daily ACC-QA, March 2009

Holdalberg Ionanalrahi-Therapia Contium

Daily ACC-QA, March 2009

Accelerator Status

- Sources, injector and synchrotron fully commissioned for protons, carbon and oxygen (256 energies each)
- H1 / H2: pencil beam libraries (E F I) for protons and carbon in therapeutical quality reached in April, 2008
 outstanding beam quality: very high position and focus stability, small intensity fluctuations
- R+D-cave: protons, carbon and oxygen energy libs established
- Gantry: proof of principle for protons and carbon (representative settings in the full phase space (Ε F I α))
- To do: intensity upgrade (x3) under way (sources, LEBT, RFQ)
- Operation scheme:
 - 2007: 24 h / 5 days
 - 2008ff: 24 h / 7 days, 330 days, 2 shutdowns 14 days each
- Availability of the pencil beams @ H1/2: ≈ 98%

Dose Delivery and Medical Equipment

Identical patient positioning systems

- fixed beam
- Gantry

Workflow optimization

- automated QA procedures
- automated patient hand over from shuttle

Inroom position verification

- 2D
- 3D Cone beam CT

Open for future applications and workflows

Treatment Planning System

Commissioning

commissioning result, Protons @ H1: 3d dose delivery vs. treatment planning 24 thimble-type ICs in a water phantom, standard deviation 2.2 %

Commissioning

Next Steps

- Stabilize the clinical workflow
- Finalize the bugfixing of the "kick-off-version":
 system freeze in May 2009
- Perform the system integration and system tests (~3000 test cases) to fulfill the requirements of the Medical Device Directive (=> CE label)
- User training
- Approval for the full facility by the German authorities some weeks later

The HIT Gantry Rotates

HIT / Milestones

1998 / Aug 2000 / Dec 2002 / Dec 2003 / Spring 2004 / Autumn 2004 / May 2005 / Oct 2006 / Apr 2006 / Dec 2007 / Feb 2007 / Mar 2007 / Apr 2007 / Dec

2008 / Jan

Proposal submitted Technical proposal Tendering documents Tendering activities (acc.) Tendering act. (medtech) Foundation stone Installation of acc.comp. Commissioning IQ + LEBT Injector fully commissioned 1st turn in the synchrotron 1st beam at H1 1st gantry rotation pencil beam libs for p, C in H1+2 1st beam at the gantry isocenter

Created by the Italian Ministry of Health at the beginning of 2001

21st November 2001, the Board has been established

to build a Centre with two main goals:

- To treat patients using hadrontherapy
- To perform clinical and radiobiological reasearch

Material provided by Sandro Rossi (CNAO)

CENTRO NAZIONALE DI ADROTERAPIA ONCOLOGICA CNAO – Pavia (Italy)

Buildings and plants ready and CNAO people have moved to Pavia

The High Technology commissioning is ongoing

The heart of CNAO

SYNCHROTRON

OPTIMIZED

for an hospital based facility (all lon-therapy centres existing in the World adopt it):

- Safety
- Efficiency
- Reliability
- Maintainability
- -Designed by

PIMMS/TERA

C^{4+} , 230 μA (design goal = 200 μA !)

RFQ commissioning completed

Transmission efficiency:

Rektalbarg brennfedt Fihangels Confluen

Gross plan: Start overall commissioning summer 2009

Start treatments in 2010

Outlook

- Particle therapy will cover the full spectrum of radiotherapeutical indications
- Per 10 million inhabitants one particle therapy facility may be required
- Treatments will be fully accepted by the health insurance systems

