Non Collider

Muon Collider Progress

R. B. Palmer (BNL)

PAC09

Driver

• Target & capture

Acceleration

• Collider ring ***

Matching between 50T solenoid cooling ***

- rf breakdown problem for 6D cooling
 - ALD or other surface preparation
 - Magnetic insulation ***
 - High pressure gas ***
 - Cold cavities ***
- Conclusion

*** New results since last year

Vancouver

5/5/09

Why a Muon Collider?

- Point like interactions as in linear e^+e^-
- Negligible synchrotron radiation:
 Acceleration in rings Small footprint Less rf Hopefully cheaper
- ullet Collider is a Ring pprox 1000 crossings per bunch Larger spot Easier tolerances 2 Detectors
- Negligible Beamstrahlung
 Narrow energy spread
- 40,000 greater S channel Higgs Enabling study of widths

Schematic

$$\mathcal{L} = n_{\text{turns}} f_{\text{bunch}} \frac{N_{\mu}^{2}}{4\pi\sigma_{\perp}^{2}}$$

$$\Delta\nu \propto \frac{N_{\mu}}{\epsilon_{\perp}}$$

$$\mathcal{L} \propto B_{\text{ring}} P_{\text{beam}} \Delta \nu \frac{1}{\beta^*}$$

Collider Parameters

C of m Energy	1.5	4	TeV
Luminosity	1	4	$10^{34} \text{ cm}^2 \text{sec}^{-1}$
Muons/bunch	2	2	10^{12}
Ring circumference	3	8.1	km
Beta at IP $=\sigma_z$	10	3	mm
rms momentum spread	0.1	0.12	%
Required depth for $ u$ rad	13	135	m
Repetition Rate	12	6	Hz
Proton Driver power	\approx 4	≈ 1.8	MW
Muon Trans Emittance	25	25	pi mm mrad
Muon Long Emittance	72,000	72,000	pi mm mrad

- Emittance and bunch intensity requirement same for both examples
- Luminosities are comparable to CLIC's
- ullet Depth for u radiation keeps off site dose $< 1 \ \text{mrem/year}$

Radiation
$$\propto \frac{\mathcal{L} \beta_{\perp}}{\Delta \nu < \mathrm{B} > \frac{\gamma^2}{D}}$$

Proton driver

- Project X (8 GeV H⁻ linac),
 - Accumulation in the Re-cycler
 - Acceleration to 56 GeV in the Main Injector
 - Stack and re-bunch in new ring
 - $-1.7 \times 7 = 12 \text{ Hz } \times 40 \text{ Tp} = 4 \text{ MW}$
- Alternatives
 - Doing it all at 8 GeV
 - Sequence of synchrotrons

Target & Capture

- Mercury Jet Target
- 20 T capture
- Adiabatic taper to 2 T
- MERIT Experiment at CERN H. Kirk (BNL) &K. McDonald
 - No problems seen up to 30 Tp
 - (cf 40 Tp for 56 GeV \approx 300 Tp for 8 GeV)

MERIT Experiment at CERN

- 15 T pulsed magnet
- 1 cm rad mercury jet
- Up to 30 Tp at 24 GeV
- Magnet field lowers splash velocities

Extrapolation to Collider parameters looks ok no current proton source intense enough to test

Phase Rotation

- Neuffer method:
 - Bunch first
 - then Rotate
- New optimization generates
 12 vs. 21 bunches makes merging easier
- Simulations assume rf in magnetic fields

Drift (m)	57
Bunch (m)	31
Rotate (m)	36
rf grad (MV/m)	15

Acceleration

- Sufficiently rapid acceleration is straightforward in Linacs and Recirculating linear accelerators (RLAs)
 Using ILC-like 1.3 GHz rf
- Lower cost solution would use Pulsed Synchrotrons
 - Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)
 - SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)
 - SC & pulsed magnet synchrotron 900-2000 GeV (in new tunnel)

Collider Rings

- 1.5 TeV (c of m) Design by Alexahin & Gianfelice-Wendt
 - Now meets β^* and acceptance requirements ***
 - But early dipole may deflect unacceptable background into detector

- 4 TeV (c of m) 1996 design by Oide
 - Meets requirements in ideal simulation
 - But is too sensitive to errors to be realistic

Muon Cooling

All parts simulated as some level

Final Cooling in 50 T Solenoids

ICOOL simulate all stages, minus matching and re-acceleration

Simulation, including matching, of last two solenoids

6D cooling in Guggenheim Lattices

Bending added

to generate dispersion for 6D-cooling Guggenheim geometry

Parameters

Stage	freq (MHz)	Grad MV/m	Mag (T)
Initial	201	12	3
Mid	402	17	6
Final	805	20	12

Experimental results on breakdown in fields

Possible solutions

- 1. ALD, other surface treatment
- 2. Cold Beryllium, or Al cavities
- 3. Magnetic Insulation
- 4. High pressure gas

Some problems in this data Conclusions are preliminary Lines to guide the eye

(Palmer Fernow

Gallardo Li Stratakis)

1) ALD or other surface treatment

- Substantial improvement in super-conducting cavity
- Will it improve magnetic field damage?

2) Cold Beryllium or Aluminum Cavities

- SLAC observes copper surface damage with cyclical heating of only 45 degrees
- Focused field emission currents should damage with similar temperatures
- Breakdown will follow if the damage is on a high gradient surface
- Strains depend on magnetic field, material properties, and initial temperature

For fixed rf gradient
$$S \propto \int_{t=0}^{\tau} \frac{\alpha(T) \; dE/dx}{B^2 \; \rho \; C_p(T) \; \sqrt{\frac{\tau \; K(T)}{\rho \; C_p(T)}}} dt$$

Relative B for same strain

- Cold beryllium gives reduction $B_{damage} \approx 22$ (certainly sufficient)
- Warm beryllium gives reduction $B_{damage} \approx 7$ (probably sufficient)
- Cold aluminum gives reduction $B_{damage} \approx 3$ (possibly sufficient)
- WARNING: Several assumptions in this calculation
 But test of cooled copper cavity will check the hypothesis

Beryllium Cavity using sheet material

Beryllium can also be deposited on other materials - used at ITR

3) Magnetic Insulation Concept

- If magnetic field lines are parallel to an emitting surface
- All field emitted electrons will return to the surface with low energies and do no damage

A first experiment (Under construction at FNAL)

. Simulation

Experiment in 4 T solenoid

Example of Mag. Insulated Accelerating Cavity

With extra coils, solutions possible without field flip

RFOFO 6D Guggenheim Cooling

- Surface fields now ≈ 2 times acceleration
- Shunt impedance worse
- Higher content of Fourier content in B vs z
- ullet \longrightarrow Greater losses

4) High pressure gas filled rf (Mucool & Muons Inc)

- High pressure hydrogen gas suppresses breakdown
- And can be used as primary absorber
- Lattices must have low β_{\perp} everywhere
- Emittance exchange using LiH wedges
- Or systems with longer paths for higher momenta (e.g. HCC)

Helical Cooling Channel (HCC) (MCTF, & Muons Inc)

• Muons move in helical paths in high pressure hydrogen gas

• Higher momentum tracks have longer trajectories giving momentum cooling

(emittance exchange)

- Required Fields 50-100% higher than in Guggenheim
- But transmission better

- Engineering integration of rf difficult Easier with lower average gradient but where are the waveguides?
- Possible problem of rf breakdown with intense muon beam transit

ICOOL Simulations

- Mag Insulation transmission is poor
- HCC with ideal fields is better, even with low gradient
- But original RFOFO Guggenheim is best

Conclusion

- All stages for a "baseline" design have been simulated at some level
- 1.5 TeV Collider design now has acceptance for 25 mm mrad emittance
- Example of matching for final 50 T cooling done
- Significant technical problem is rf breakdown in magnetic fields
- But several possible solutions
 - ALD or other surface treatment
 - Cooled AI or Be cavities ← preferred solution
 - Magnetically insulated cavities
 - High pressure hydrogen gas filled cavities