Muon Collider Progress

X }({2 = R. B. Palmer (BNL)
on 0ol PACO9

e Driver 5/5/09
e Target & capture
e Acceleration Vancouver
e Collider ring ~ ***

KKK

e Matching between 50T solenoid cooling
o rf breakdown problem for 6D cooling

— ALD or other surface preparation

— Magnetic insulation = ***

— High pressure gas ***

— Cold cavities ***

e Conclusion

*** New results since last year



Why a Muon Collider?

e Point like interactions as in linear eTe™

e Negligible synchrotron radiation:
Acceleration in rings  Small footprint Less rf Hopefully cheaper

e Collider is a Ring
~ 1000 crossings per bunch  Larger spot  Easier tolerances 2 Detectors

e Negligible Beamstrahlung  Narrow energy spread

e 40,000 greater S channel Higgs Enabling study of widths
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Collider Parameters

C of m Energy 1.5 4 TeV
Luminosity 1 4 |10%* cm®sec!
Muons/bunch 2 2 1012
Ring circumference 3 8.1 km
Beta at IP = 0., 10 3 mm
rms momentum spread 0.1 | 0.12 %
Required depth for v rad| 13 135 m
Repetition Rate 12 6 Hz
Proton Driver power ~4 |~ 1.8 MW
Muon Trans Emittance 25 25 pi mm mrad
Muon Long Emittance |72,000 72,000 | pi mm mrad

e Emittance and bunch intensity requirement same for both examples

e Luminosities are comparable to CLIC's

e Depth for v radiation keeps off site dose < 1 mrem /year
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Proton driver
e Project X (8 GeV H™ linac),

— Accumulation in the Re-cycler
— Acceleration to 56 GeV in the Main Injector

— Stack and re-bunch in new ring
—17x7=12Hz x40 Tp =4 MW

e Alternatives

— Doing it all at 8 GeV
— Sequence of synchrotrons

Target & Capture
e Mercury Jet Target

e 20 T capture

e Adiabatic taperto 2 T

e MERIT Experiment at CERN H. Kirk (BNL) &K. McDonald

— No problems seen up to 30 Tp
— (cf 40 Tp for 56 GeV ~ 300 Tp for 8 GeV)
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MERIT Experiment at CERN
e 15 T pulsed magnet

e 1 cm rad mercury jet

e Up to 30 Tp at 24 GeV

e Magnet field lowers
splash velocities
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Extrapolation to Collider parameters looks ok
no current proton source intense enough to test



Phase Rotation

e Neuffer method:

— Bunch first
— then Rotate

e New optimization
generates

12 vs. 21 bunches
makes merging easier

e Simulations assume
rf in magnetic fields

Drift (m)
Bunch (m) 31
Rotate (m) 36
rf grad (MV/m) 15
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Acceleration

e Sufficiently rapid acceleration is straightforward in Linacs

and Recirculating linear accelerators (RLAs)
Using ILC-like 1.3 GHz rf

e Lower cost solution would use Pulsed Synchrotrons

— Pulsed synchrotron 30 to 400 GeV (in Tevatron tunnel)
— SC & pulsed magnet synchrotron 400-900 GeV (in Tevatron tunnel)
— SC & pulsed magnet synchrotron 900-2000 GeV  (in new tunnel)
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Collider Rings
e 1.5 TeV (c of m) Design by Alexahin & Gianfelice-Wendt

— Now meets 3* and acceptance requirements ***

— But early dipole may deflect unacceptable background into detector
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e 4 TeV (c of m) 1996 design by Oide

— Meets requirements in ideal simulation

— But is too sensitive to errors to be realistic



Muon Cooling
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e All parts simulated as some level
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Final Cooling in 50 T Solenoids
Liquid Hydrogen 50 T Solenoids

Re-acceleration & Matching

ICOOL simulate all stages, minus matching and re-acceleration
100 = long (mm rad)
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Simulation, including matching, of last two solenoids

ct (m)

e Little loss in matching

. B 50 T HTS Solenoids M
= O
— = Liquid hydrogen —
LL ) 50+ L
= Transport solenoids
X _
) | J
[] e — — | | - e
0 10 20 30
Length (m)
i E 80 | =
49 52 10.013.617.6226 26.927.1 = 60 | T
. . . N2 ;. bo B
2. gy - B c i a
3 w iﬁ& 4_3 40 L 3
% Q:%_’ t O
Rl 20| E=246-86(M
B A €, =43.3—24.0 (um )
o ) €| = 16.8 —71.5 (mm)
10 . .
1 1 1 I
2 3 4
0 25 50 75 100 Emit trans (micron)

e Transmission 85%

12



6D cooling in Guggenheim Lattices
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Bending added

to generate dispersion for 6D-cooling
Guggenheim geometry

Parameters

Stage freq (MHz) Grad MV/m Mag (T)
Initial 201 12 3
Mid 402 17 6
Final 805 20 12
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Experimental results on breakdown in fields
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Possible solutions

1. ALD, other surface treatment
2. Cold Beryllium, or Al cavities
3. Magnetic Insulation

4. High pressure gas
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Conclusions are preliminary
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1) ALD or other surface treatment
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e Substantial improvement in super-conducting cavity

e Will it improve magnetic field damage ?
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2) Cold Beryllium or Aluminum Cavities

Thermal diffusion
Electron beamlet

\'’4
o

r Energy Loss

e SLAC observes copper surface damage with cyclical heating of only 45 degrees
e Focused field emission currents should damage with similar temperatures
e Breakdown will follow if the damage is on a high gradient surface

e Strains depend on magnetic field, material properties, and initial temperature
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Relative B for same strain

3 cf needed factors:
20 7 ~ 3 at 805 MHz

~ 4 at 201 MHz

Beryllium(RRR=100)
Copper(R R:119?
Aluminum(RRR=143)

T l

0 100 200 300
Operating temperature (K)

Mag field factor
—_
O
()
N W PS~CIODO
] ] T 1 ||

=
o

e Cold beryllium gives reduction Bygmnage =~ 22 (certainly sufficient)
e Warm beryllium gives reduction Bygmnaege = 7 (probably sufficient)
e Cold aluminum gives reduction By = 3 (possibly sufficient)

e WARNING: Several assumptions in this calculation
But test of cooled copper cavity will check the hypothesis
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Beryllium Cavity using sheet material
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Beryllium Beryllium Waveguide
braised to o
copper window

Beryllium can also be deposited on other materials - used at ITR
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3) Magnetic Insulation Concept

o [f magnetic field lines are parallel to an emitting surface

e All field emitted electrons will return to the surface with low energies and do
no damage

A first experiment (Under construction at FNAL)
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Example of Mag. Insulated Accelerating Cavity

/\ rf cawty
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With extra coils, solutions possible without field flip
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e Surface fields now ~ 2
times acceleration

e Shunt impedance worse

e Higher content of Fourier
content in B vs z

e — Greater losses



4) High pressure gas filled rf (Mucool & Muons Inc)

‘-‘.I = k
Eopm g 37T e
; E J—c. -'I —— ____ =
S b Field e
S P 1
1 # g
30 Vi ~66 Atm
G'm_ | [ 41! (or 16 atm at 70 K)

2 |- 1 [

10 {4 Mo

%o w0 w0 a0  sw im0 o

Pressure (psia) at T=293K

e High pressure hydrogen gas suppresses breakdown
e And can be used as primary absorber

e Lattices must have low (3, everywhere

e Emittance exchange using LiH wedges

e Or systems with longer paths for higher momenta (e.g. HCC)
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Helical Cooling Channel (HCC)
(MCTF, & Muons Inc)

e Muons move in helical paths in high pressure hydrogen gas

e Higher momentum tracks have longer trajectories giving momentum cooling
(emittance exchange)

H2 gas

Pressure vessel

- ] 5C Coils

rHf cavities

""IIISC Coils
[

Pressure Vessel Ill I I i Il

0 50 100
cm

e Engineering integration of rf difficult
Easier with lower average gradient
but where are the waveguides?

e Required Fields
50-100% higher
than in Guggen-
heim

e But transmission
better

e Possible problem of rf breakdown with intense muon beam transit
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ICOOL Simulations
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e Mag Insulation transmission is poor
e HCC with ideal fields is better, even with low gradient
e But original RFOFO Guggenheim is best
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Conclusion

e All stages for a "baseline” design have been simulated at some level
e 1.5 TeV Collider design now has acceptance for 25 mm mrad emittance

e Example of matching for final 50 T cooling done

e Significant technical problem is rf breakdown in magnetic fields

e But several possible solutions
— ALD or other surface treatment
— Cooled Al or Be cavities «— preferred solution

— Magpnetically insulated cavities

— High pressure hydrogen gas filled cavities
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