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BASROC and CONFORM  (&iom

BASROQOC:

e British Accelerator Science and Radiation Oncology
Consortium;

e a group of academic, medical and industry specialists;

e the current aim - the construction of a hadron therapy
facility.;

e an FFAG is favoured;

e now focused on ‘non-scaling” alternative (nsFFAG) -
much reduced apertures;

e set up ‘CONFORM’ - the COnstruction of a Non-
scaling FFAG for Oncology, Research and Medicine.
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EMMA and PAMELA

UK funding has now been obtained to support:

e The construction of a small prototype nsFFAG —
EMMA:

an ‘Electron Model for Many Applications’
accelerating between 10 and 20MeV;
being built at STFC’s Daresbury Laboratory, U.K;

will obtain e from the recently commissioned ALICE
facility.

e The feasibility design of PAMELA:

Non-Scaling FFAG Magnet Challenges, Neil Marks.

a ‘Particle Accelerator for Medical Applications’;

a prototype nsFFAG for hadron therapy;

being designed at the John Adams Institute (JAI), Oxford.
first stage is the design of a 250 MeV proton accelerator;

including detailed lattice and tracking studies, magnet and
rf design.
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The EMMA concept
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The EMMA Layout

An experimental facility;

Injection and extraction at any energy
between 10 and 20 MeV.

see: WE4BI01; S.Smith:
‘EMMA, the World’s First Non-
Scaling FFAG’.

~ 6 metres
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EMMA Magnet requirements

84 combined function magnets:
o2 families — Fs and Ds

ewith dipole and quadrupole component to be independently
controllable.

Parameter F magnet D magnet
Bend angle for 15 -0.499 0.199 radians
MeV orbit
B length 55 65 mm
Max. dipole flux 0.0302 0.102 T
density
Max. quadruole 9.3 5.8 T/m
gradient
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Achieving independent harmonic control

Dipole and quadrupole components need to be
independently controlled — How?

A dipole with inbuilt pole-face gradient and pole-face
windings?
NO - quadrupole field is stronger than dipole!

Solution: conventional quadrupole located off-centre to
provide dipole component:

e adjust quadrupole field by coil current;
emove quadrupoles radial to adjust dipole.
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Resulting quadrupole parameters

Parameter F quad. D quad
Inscribed radius 37.0 53.0 mm
Yoke length 55.0 65.0 mm
Offset of 15 MeV 7.51 34.05 mm
beam from magnet
centre
Horizontal beam -2.6 to +2.7 -5.3 to +14.5 mm
movement from 15
MeV orbit
Good gradient with | -32.0 to +15.8 | -56.0 to -9.9 mm
respect to magnetic
centre
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Quadrupole configurations.

F quad — beam crosses magnetic centre — full quad.
required.

D quad - beam does not cross magnetic centre — use a
half quad with magnetic mirror on centre line?

Magnetic
NO - magnetic mirror needs to extend mirror
outside magnet ends to give true 3D

reflection — not possible due to straight

length. Much gradient distortion results.

Solution; D magnet also needs to be a full quadrupole.
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Fields in straights.

The straight between magnet doublets are very short —
110 mm (inscribed radii are 55 and 65mm!).

So — quad field penetrates into the straights:
e distorts quadrupole field;

e affects other components (particularly inject/
extract magnets).

Solution: Insert ‘clamp (mirror) plates around each
doublet.

Non-Scaling FFAG Magnet Challenges, Neil Marks. PACO9



The EMMA doublet (plus cavity)
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Resulting EMMA layout.
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Magnetic design

Very short magnets - “‘all ends and no middle’.

Conventional quad. design (hyperbolas with tangential
extensions) gave poor 3D gradients.

Solution:
e Replace hyperbolic pole face
with series of straight lines.

-\ (determined by
° ° ° . \ b d d
» Adjust positions of vertices inscribed radius)

to optimise field distribution.

(détermined by symmetry)
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Pole profiles for the F and D magnets
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Prototype magnets

Two prototypes were built (*) and measured:

F magnet
Gradient quality ( Afg(x)/[g(0)):

*F magnet : +0.4%, -2.0% in + 32mm — acceptable;

*D magnet: -1% at 35mm — needs to go to 56 mm — not acceptable.

Subsequently the poles of the D were shimmed and achieved similar
quality to the F — acceptable.

(*) by Tesla Engineering, Storrington, UK
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Production magnets - Fs

34 F acceptable magnets have now been assembled,
measured and delivered ().

Gradient qualities Afg(x)/fg(0) for all 32:

0010:' T
o 0005]
2
%0000
B |
— .
T _poos |

(*) by Tesla Engineering, Storrington, UK
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Production magnets - Ds

Measurement of the Ds presents problems:

With the rotating radius of 35 mm, repositioning of the
coil to -20mm is necessary to cover the whole aperture
of 56 mm. Data from 2 magnets; the twin scans are
superimposed:
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Girder Assembly Commences

Radial movement
mechanism
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Magnet movement

THK slide with motor, limit

switches and
NUMERIK JENA 1 um linear
encoder.

Range | Repeatability | Accuracy | Resolution | Backlash
(mm) (um) (um) (um) (um)
QF | £3(6) + 3 (6) + 10 (20) 1 3
QD | +15,-6 + 3 (6) + 10 (20) 1 3
(21)
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EMMA Injection and Extraction

Conventional beam manipulation (single septum and
two kickers for each line) is envisaged.

But - space between quadrupole doublets is 110mm.
How is beam injected / extracted at the septum straight?
Conduct beam through a number of magnets pairs?
NO:

e beam would pass through fringe fields; EMMA is an
experimental facility; fields will change so flight path
geometry is not fixed;

* magnets are moved to adjust dipole component;

beam-line hardware would therefore need to be
flexible.
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Injection and extraction

Solution:

Inject or extract in a single straight with injected or
extracted beam missing adjacent magnets.

This results in a large deflection angle ~ 80°
injection

kickers septum
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Septum parameters

Magnet is
based on:
eeddy-current
passive
septum;

e coil on the
back-leg;
eshort pulse
excitation.

Maximum deflection 77 | degrees
Maximum flux density 0.91 T
Yoke length 82 mm
‘C core’ gap height 220 | mm
Internal horizontal ‘stay- 62.5 | mm
clear’
Turns on excitation coil 2
Current pulse half sine-wave | 25 us
duration
Pulse peak current 9.1 kA
Pulse peak voltage 900 Vv
Repetition rate 20 Hz
PAC09
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Septum engineering design

The septum magnet has been designed and is being
built “in-house’.
- yoke assembled from
0.1mm silicon steel
laminations;

eeddy-current shield is
3mm thick copper;

emounted on a slide to
provide radial
movement and rotation
about a vertical axis;

e copper braid conducts
heat from eddy-shield to
tank walls.
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Extraction septum in its vacuum tank.
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Kicker magnet requirements

Maximum beam deflection 105 mR
Maximum flux density in gap 54 mT
Horizontal good field region +23 mm
Minimum vertical gap at beam 25 mm
Length of ferrite yoke 100.0 mm
Horizontal deflection quality +1 %o
Minimum flat top (+0, -1%) > 5 ns
Field rise/fall time (100% to 1%) <50 ns
Peak current (1 turn conductor) 1.1 kA
Peak voltage (with feed-through) 23 kV
Repetition rate 20 Hz
PAC09
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Kicker magnet engineering

The kickers have also been designed and a prototype
constructed in house:

A single turn coil is mounted on the back-leg, with an eddy shield
at the C core mouth.
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Pulse Waveforms

A contract is placed with APP(*) to design and build the kicker
supplies;

ideal waveform for injection: 500 /A\

Injection constraints 500
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(*) Applied Pulsed Power, Inc.™, Freeville, New York, 13068-0348.
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The PAMELA Ring Magnets

The PAMELA project aiming to:
eaccelerate p+ to 250 MeV;
eC+ to 68M€V/A, Design Goals and

see: TH4GACO03; K.Peach et
al; ‘PAMELA Overview:

Principles”
eup-grade potential to 400MeV /A.
Lattice 12 cells of triplets
Magnet lengths 314 mm
Straights between magnets 314 mm
Straights between triplets 1.7 m
Radial offset, Fs to Ds 66 mm
Bore aperture diameters 280 mm
Combined function 4 components, n=1 to n=4
Peak field 4.25 T
PACO09
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PAMELA Lattice Layout
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Magnet Engineering

Magnets are required:

* to generate 4 components, dipole to octupole;
e each component to be independently controllable;

e to be superconducting, to achieve the maximum field levels of >
4°T.

How?

Solution: a novel helical coil arrangement:
e each harmonic is generated by a pair of helical coils;

e counter wound, so that the axial component cancels;
e geometry generates required transverse component;

¢ end field have no harmonic distortion; see: MOGPEP073 Witte et

al; ‘PAMELA Magnets,

* multiple pairs give stronger amplitudes. Design and Performance”
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Helical Coil Arrangements

combination

octupole
quadrupole

sextupole
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Generating Transverse Fields.

To generate the required transverse harmonics, the
conductors are placed on specific curves given , in
Cartesian coordinates, by:

x = Rcosf
y = Rsin0
hé R .
zZ = + sin(n0)
21 tanao
where R is the helical coil radius;

O is the azimuthal angle;

h is the winding pitch;

a is the tilt angle of the solenoid,

n is the order of the harmonic (dipole = 1, etc).
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PAMELA Magnet Parameters.

Dipole Quad | Sextupole | Octupole
Length 560 565 555 564 mm
No. of coil pairs 5 4 4 1

Inner radius 140 162 177 185 mm
Outer radius 160 173 183 187 mm

Tilt 50 50 60 60 )

Peak B at wire 5.1 5.4 5.0 4.2 T
PACO9
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Conclusions

EMMA and PAMELA demonstrate certain features of
nsFFAGsS:

e they do provide the benefit of smaller magnets;

* but little lattice space and small narrow magnets present
other problems;

e injection and extraction present big engineering challenges
due to lack of space;

e for hadrons and high momentum gains, superconducting
coils are probably necessary;

e independent amplitude control of harmonics is important;

e the PAMELA nested helical coils look a very attractive
solution for s.c magnets;

e building EMMA with pure quadrupoles and using
mechanical movement to adjust dipole component provides a
sensible engineering solution.
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