May 4-8 2009 Vancouver, Canada

PAGOS STORY

Progress on Improving SC Cavity Performance for ILC

Rong-Li Geng

Jefferson Lab

PAC09, May 4-8, 2009, Vancouver, Canada

ILC SCRF Cavity Performance

- Goal Operation
 - Eacc 31.5 MV/m
 - Q0 1E10
- Vertical test acceptance
 - Eacc 35 MV/m
 - Q0 8E9
- Gradient choice matters
 - High impact on project cost
 - Energy reach for fixed tunnel length
- 16,000 cavities
 - High yield required
 - Industrialization necessary

Release 3

February 2009

ILC Global Design Effort

Director: Barry Barish

Prepared by the Technical Design Phase Project Management

Project Managers: Marc Ross

Nick Walker Akira Yamamoto

Release 3

February 2009

calendar year	2008	2009	2010	2011	2012
Tech. Design Phase I					
Tech. Design Phase II					
SCRF Critical R&D					
CM Plug compatibility interface specifications					
S0 50% process yield at 35 MV/m				1 1 1 1	
S0 90% production yield at 35 MV/m					
Re-evaluate choice of baseline gradient					
S1-Global (31.5MV/m cryomodule at KEK)					
Cryomodule string test development at KEK					
S1 demonstration (FNAL)	l i i i i				
Cryomodule string test development (RF unit) at FNA	L : : :				
9mA full-beam loading at TTF/FLASH (DESY)					
Demonstration of Marx modulator					
Demonstration of cost-reduced RF distribution					

Prepar Manag

Projec

R

Release 3

February 2009

	Tech. Design Phase I Tech. Design Phase II SCRF Critical R&D CM Plug compatibility interface specifications S0 50% process yield at 35 MV/m S0 90% production yield at 35 MV/m Re-evaluate choice of baseline gradient S1-Global (31.5MV/m cryomodule at KEK) Cryomodule string test development at KEK S1 demonstration (FNAL) Cryomodule string test development (RF unit) at FNAL 9mA full-beam loading at TTF/FLASH (DESY) Demonstration of Marx modulator	2010 :	; 2011;	2012 :		
	Tech. Design Phase II					
	SCRF Critical R&D					
	CM Plug compatibility interface specifications					
	S0 50% process yield at 35 MV/m				: : :	: : : :
	S0 90% production yield at 35 MV/m					
ar	Re-evaluate choice of baseline gradient					
ag	S1-Global (31.5MV/m cryomodule at KEK)	1 : :				1 1 1 1
	Cryomodule string test development at KEK					
ec1	S1 demonstration (FNAL)			2010 2011		
	Cryomodule string test development (RF unit) at FN	AL	: : 💻		2011 2012	
	9mA full-beam loading at TTF/FLASH (DESY)					
	Demonstration of Marx modulator					
₹oı	Demonstration of cost-reduced RF distribution					

Prepar Manag

Projec

Release 3

February 2009

	calendar year	2008	2009	2010 : :	2011 :	2012
	Tech. Design Phase I					
ı	Tech. Design Phase II					
I	SCRF Critical R&D					
	CM Plug compatibility interface specifications					
١	S0 50% process yield at 35 MV/m					
١	S0 90% production yield at 35 MV/m					
ar	Re-evaluate choice of baseline gradient					
ıg	S1-Global (31.5MV/m cryomodule at KEK)				1 1 1	1 : : :
	Cryomodule string test development at KEK					
C1	S1 demonstration (FNAL)					
١	Cryomodule string test development (RF unit) at FNA	Ĺ				
ı	9mA full-beam loading at TTF/FLASH (DESY)					
I	Demonstration of Marx modulator					
OI	Demonstration of cost-reduced RF distribution					

Prepar Manag

Projec

Ro

Globally Coordinated ILC Gradient

DESY

- > 17 cavities reached > 35 MV/m since 2003
- More cavity (6th production) testing coming...
- XFEL 800 cavities to be manufactured

JLAB

- 7 cavities reached > 35 MV/m since 2006
- Understand 9-cell limit by T-mapping & optical inspection
- Large-grain cavity

FNAL

- Infrastructure ramp up (EP machine & VTA commissioned)
- > 20 cavities received from industry, including US cavity vendor

KEK

- STF infrastructure ramp up (EP machine & VTA commissioned)
- Low-loss shape cavity
- 9-cell cavity T-mapping and optical inspection

Cornell

• Quench detection (second sound) instrumentation development

Shape, Material and Processing

- Baseline: TESLA-shape, fine-grain Nb, electropolishing
 - ~ 200 cavities manufactured (mostly DESY)
 - Tested in module and with beam
 - XFEL 800 cavities to be manufactured
 - EP required for 35 MV/m with fine-grain
 - Major global effort is to improve yield
- Alternative: Low-loss & Re-entrant shape, large-grain N
 - LL & RE shapes for higher gradient
 - Large-grain material for 35 MV/m without EP (lowering cost potential)
 - Excellent demonstration with many single-cells
 - 9-cell demonstration under way
- This talk focuses on baseline cavity and processing

Main Processing & Testing Steps

- Heavy EP for damaged layer removal (100-150 μm)
- Cleaning
- Vacuum furnace out-gassing for H removal (600-800°
- Tune for field flatness and frequency
- Light EP for contamination layer removal (20-50 μm)
- Post-EP cleaning (alcohol or ultrasonic + detergent)
- High pressure water rinsing
- Clean room assembly
- Low temperature bake out (120 °C X 48 h)
- RF test
- Optional T-mapping test
 Optional optical inspection

DESY 6th Production Run Cavities Successful Heavy EP in Industry

Alcohol Rinsing after Final EP Reduces Field **Emission**

XFEL The European X-Ray Laser Project

Cavities since Jan 2006, 1st test

Canada

Final preparation: Analysis of final test

D. Reschke, to be published SRF 2009

=> "final EP" gives higher Emax than "final BCP"

Presented at TILC09 by L. Li

DESY 9-cell T-mapping & Optical Inspection

Evolution of defects: Z137

Equator #1 at 23 deg.

Equator #1 at 20 deg.

T-map of Z137

After 108 μm main EP

- Equator #1 shows large steps and rough grains after main EP
- All other equators normal

Before treatment

S. Aderhold, TILC09

π-mode, BD at 25.2 MV/m

Latest JLab Results of 9-cell from One

32 MV/m quench (A12) Study and Recover to 40 MV/m by Re-EP

Eacc [MV/m]

Cell 7 equator EBW seam

No gross defect observed at quench location

ab Surface Studies Reveal Nb-O Granules to be Field Emit

JLab Basic EP Studies

Rotation Disk Electrode Studies Confirms The Diffusion-Limited Mass Transport Control Mechanism

JLab Large-Grain Nb Cavities

Single Crystal

- A thick sheet of a large crystal from a large grain ingot provided by CBMM has been enlarged at DESY (X.Singer, W.Singer)
- Six sheets could be prepared, large enough to deep draw half cells for TESLA/ILC - type single half cells
- We are in the process of fabricating 3 single cell cavities

Multi-cell Cavities for ILC

- The fabrication of two LL/Ichiro-type 9-cell cavities has started; niobium from CBMM and Tokyo-Denkai will be used
- The 20 sheets of TD material were sliced simultaneously by multi-wires development done by K.Saito with Japanese Industry - with very good tolerances and surface quality.
- · The sheet slicing produced very smooth surface finishes and small deviations in thickness. App. 60 sheets were slice simultaneously in only 40 hrs.

FNAL Vertical Cavity Test Facility

- 35 cavity tests in FY08/FY09, where "test" = cryogenic thermal cycle
 - 9-cell & single-cell 1.3 GHz elliptical cavities and 325 MHz HINS single-spoke resonators
 - instrumentation development, variable coupler, thermometry, cavity vacuum pump system, cavity vendor development
 - Many cavity tests dedicated to ANL/FNAL CPF commissioning

Accel 6 w/ variable coupler

TE1ACC001 w/ thermometry TE1ACC002

ANL/FNAL CPF Updates

Ultrasonic rinse with gantry crane

High-pressure rinse system with cart

Cavity assembly rail, shown in vertical & horizontal orientation

🚾 Cavity vacuum system

FNAL EP single cell cavity performance

	ВСР	EP	Ethanol	Eacc [MV/m]	Notes
NR-1	150	93		26.5	Oxidation by acid residual
TE1AES004	107	65		39.2	Equator large pit present
TE1AES005	104	100	Yes	36.3	Oxidation by HPR water
TE1ACC002		112	Yes on second	37.1	
TE1ACC001		99		41.3	FE appeared after 120°C baking
TE1ACC003		119		42.1	Pit present
TE1ACC004					

FNAL Cavity Inventory

Tesla-shape nine-cell ca	vities					
Description No. Cavities		Status				
AES 1-4	4	tested				
AES 5-10	6	received; testing in progress				
AES 11-16	6	due Oct 2009				
Accel 6-9	4	tested				
Accel 10-17	8	received Mar 2008; testing in progress				
Accel 18-29	12	due May 2009				
Jlab fine-grain 1-2	2	fabrication complete; testing in progress				
Niowave-Roark 1-6	6	due Oct 2009				
Stimulus Procurement	XX	still in the planning stages; assume first cavities ~April 2010				
Total	48					
Already Received	24					
Tesla-shape single-cell o	avities					
Description	No. Cavities	Status				
AES 1-6	6	tested at Cornell; further testing in progress				
Accel 1-6	6	received Dec 2008; testing in progress				
Niowave-Roark 1-6	6	received Jun 2008; testing in progress				
PAVAC	4	requisition in progress				
Total	22					
Already Received	18					

2nd Sound Quench Detection

- We have demonstrated that 2nd sound detection can locate multiple quench locations in a single 9-cell cavity cold test
- By exciting different TM₀₁₀ pass-band modes of a 9-cell cavity different cells can be driven to quench.

 This technique is simple, low cost, and quick to implement.

AES Fabricated 9-Cell Cavity Weld Pits Repaired

- We have successfully repaired an AES 9-cell cavity with tumbling and VEP.
- This cavity originally quenched at $E_{acc} = 15 \text{ MV/m}$ at a weld pit in the first cell, after tumbling and reprocessing $E_{acc} > 30 \text{MV/m}$.
- When excited in the $5\pi/9$ -mode a peak fields of 89 MV/m and 1400 Oe were reached in the center cell. This corresponds to $E_{acc} > 37$ MV/m.

• This test demonstrates that tumbling is an effective option to repair weld defects, e.g. pits.

AES Re-Entrant 9-cell 2.0K Test

Vertical Electropolish Proven Effective

- We have demonstrated gradients >35 MV/m in individual cells of two 9cell cavities processed with vertical EP.
- In each test the π-mode was limited by quench.

A Cycle of Vertical Test at STF KEK

Flange-CP

EP

Hot bath Rinsing

HPR

Assembly (Class 10)

Infrastructure in the STF Hall

System check with AES#1 cavity was

carried out in Oct., 2008.

Pre-tuning fo adjustment

Inspection of Inner Surface

Vertical Test

Hanging Stand

Baking (Class 1000)

E. KAKO (KEK) 2009' April 18 TILC'09 @Tsukuba Global Design Effort E. Kako

Vertical Test at STF KEK

1. Surface Inspection System

2. Temperature Mapping System

3. Passband-modes Measurement

E. KAKO (KEK) 2009' April 18

TILC'09 @Tsukuba Global Design Effort E. Kako

4

Summary of V.T Results at STF

E. KAKO (KEK) 2009' April 18 TILC'09 @Tsukuba Global Design Effort

10

KEK

KEK T-mapping New 9-cell Cavities

KEK Optical Inspection new 9-cell Cavities

Before & after EP – reveals unstable weld possible cause for quench

KEK Rinse Effect to Remove Sulfur precipitation/contamination

T. Saek

	U.P.W.	Ethanol	Ethanol	Detergent	Detergent	Detergent	Detergent
	ultrasonic	rinse	ultrasonic	FM-550	FM-550	FM-550	FM-550
	rinse	(vibration)	rinse	2 %	5 %	10 %	20 %
Cleaning Result Rongli G	×			-8, 20 09, Vanco Canada	uver,	0	O 29

KEK New ICHIRO 9-cell Cavities

- Two bare cavities tested
- One reached 36.5 MV/m so far (KEK/JLab collal
- Two full cavities fabricated (one sent to JLab)
- One full cavity fabricated with large-grain Nb

Recent Gradient Yield Progress at JLab

Recent Progress in Yield at DESY

Data provided by D. Reschke, and reassembled by M. Ross

Two Big Pushes Ahead...

Two Big Pushes Ahead...

Two Big Pushes Ahead...

Summary

Progress being made pushing yield curve

- Shown by both DESY data and JLab data
- Several cavities demonstrated > 35 MV/m after first light EP
- Expect more statistics (> 60 cavities) 2009-2010

Field emission much reduced

- Shown at DESY (alcohol rinsing) and at JLab (ultrasonic + detergent)
- 1st demonstration of 40 MV/m w/o detectable Bremsstrahlung X-ray
- Further understanding needed for further improvement

Quench understanding improved

- Yield drop 15-20 MV/m partly due to defect in equator EBW HAZ
- Most cases at JLab: one defect in one cell; other cells 32-44 MV/m
- Local repair seems to be the way to go for raising yield (besides QA)

Summary (cont.)

Global effort ramping up

- FNAL infrastructure (EP, VTA) commissioned; excellent 1-cell results
- KEK STF infrastructure commissioned
- > 60 cavities expected 2009-2010

Laboratory-Industry collaboration ramping up

- European industry heavy EP demonstrated
- First America cavity vendor meeting at FNAL feedback info to cavity vendor
- ILC PM's visit to ACCEL, ZANON, MHI, AES, NIOWAVE/ROARK, PAVAC

Outlook encouraging

- Further progress along base line seems possible
- Great potential along alternative line

