

The LHC Challenge

 LHC extrapolates stored energy by 2-3 orders of magnitude beyond state of the art, while beam momentum is extrapolated by factor 7!

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

$$L = \frac{1}{4\pi \cdot m_0 c^2} \cdot \frac{f_{rev} \cdot N_p \cdot F}{\beta^* \cdot \varepsilon_n} \cdot E_{stored}$$

 $\begin{array}{ll} \beta^* &= \text{IP beta function } (\beta_{\rm x} = \beta_{\rm y}) \\ \varepsilon_n &= \text{norm. transv. emittance} \\ N_p &= \text{protons per bunch} \\ f_{rev} &= \text{revolution frequency} \\ F &= \text{geometrical correction} \\ m_0 &= \text{rest mass, e.g. of proton} \\ c &= \text{velocity of light} \end{array}$

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

Luminosity can be expressed as a function of transverse energy E_{stored}
 that is stored in each beam (for round beams at IP):

SC Magnets: Preventing Quenches

- Shock beam impact: 2 MJ/mm² in 200 ns (0.5 kg TNT)
- Maximum <u>beam loss at 7 TeV</u>: 0.1% of beam (360 MJ) per second
 (assumed lower than Tevatron/HERA)

360 kW → proportional to stored energy

 Quench limit of SC LHC magnet:

~ 5 mW/cm³

CERN

LHC Collimators: Dilute and Stop

Quench limit: ~ 5 mJ/mm² (any SC magnet)

Required "filter" factor:

 1×10^{-10} = Leakage / Dilution

<u>Leakage factor (inefficiency):</u> 10-4

<u>Dilution factor:</u> 10⁶

Cannot be achieved with single collimator → therefore multi-stage collimation for betatron cleaning (x, y, skew) and momentum cleaning.

Incoming: up to ~ 50 MJ/mm² (primary collimator)

Multi-Stage Cleaning & Protection 3-4 Stages

Multi-Stage Cleaning & Protection 3-4 Stages

Multi-Stage Cleaning & Protection

3-4 Stages

LHC Collimation

Precision Requirements

LHC Collimation

closest to beam: primary (TCP) and secondary (TCS) collimators

 \pm 6/7 σ Gaps:

2-3 mm

LHC collimators must work as precision devices!

, (,) (,)	CERM
Parameter	Unit	Specification
Jaw material		CFC
Jaw length TCS TCP	cm cm	100 60
Jaw tapering	cm	10 + 10
Jaw cross section	mm ²	65 x 25
Jaw resistivity	μΩm	≤ 10
Surface roughness	μ m	≤ 1.6
Jaw flatness error	μm	≤ 40
Heat load	kW	≤ 7
Jaw temperature	٠C	≤ 50
Bake-out temp.	°С	250
Minimal gap	mm	≤ 0.5
Maximal gap	mm	≥ 58
Jaw position control	μ m	≤ 10
Jaw angle control	μrad	≤ 15
Reproducibility	μm	≤ 20
		2003 Specification

The LHC Collimation System

- The by far largest and most precise system of its kind that has been built to this date:
 - 130 phase I collimators and absorbers produced with specifications and control at 10 μm level (including spares).
 - Phase I: In total 108 devices installed (~210 m length occupied). 97 movable collimators with a total of 194 jaws and > 450 degrees of freedom for positioning. All ready for LHC startup. Results shown here...
 - Phase II: In total 158 devices installed (~ 310 m length occupied). 147 movable collimators. Majority approved and infrastructure installed.
 - Maximum possible: In total 168 devices installed (~ 330 m length occupied).
 Only space reservations at this time.
- Investment (cost & manpower) comparable to a small accelerator.
- Design, R&D, prototyping, series production, installation and commissioning has been managed since late 2002 through the CERN LHC collimation project.

Production: Minimum Collimation Gap (Ring)

High precision collimators produced adequate for LHC conditions!

Production: Jaw Flatness (Ring & TL)

Flatness better than many feared. Out of tolerance collimators were placed in locations with more relaxed tolerances, meaning larger beta (limited sorting). Enough collimators for tightest places (40 μ m).

Production: Mechanical Play (Ring & TL)

Mechanical play in movement system when reversing direction. Specification of 20 μm well achieved. Will be corrected for in operational use.

Tunnel: 3 Primary Betatron Collimators

LHC Collimation

Tunnel: Passive Absorber TCAPA

LHC Collimation

Tertiary Collimator "Splash" Events

R. Assmann, PAC 5/09

CMS view of beam hitting collimator

Performance Highlights

- Collimators used very successfully as stoppers and fixed targets during September 10 first beam day (collimator events) and earlier injection tests. Unforeseen but entertaining use of tertiary collimators at experiments...
- Machine protection functionality completely checked (interlocks from temperature and position sensors activated by violating limits). Few residual sensor issues identified. System was fully safe (ready for higher intensities/energies).
- No opportunity to set up with beam as collimators.
- Collimators kept operational since August, except IR3 collimators
 which were switched off after incident in 3-4. All 18 collimators in IR3
 fully OK.
- Used time after incident to perform reproducibility test over 10 days with all 28 collimators in IR7.

Nominal Collimator Cycle

Measured gap for 3 primary collimators beam1

Real functions for 28 collimators generated in collimator control. Executed by operation crew on shift (thanks!).

Test Procedure

- Each collimator has 6 position sensors:
 4 jaw corners and 2 gaps measured independently.
- Redundancy for 6 sensors and 4 DOF.
- Stepping motors are driven through the collimator cycle without any feedback from measured positions.
- Position monitoring implemented completely independent (safety) and used for measuring the jaw position and the gaps.
- Jaw positions used for operational interlocks (time driven).
- Gap sensors used for independent MP interlock (energy driven).
- How well do we control collimators?

Top view for horizontal collimator.

Reproducibility Run

TCP.B6L7.B1

Analyzing 19 cycles after T=0 (reset of collimator sensor calibrations).

Zoom into Collision Gaps

Tr. "Assmann," PAU つびが

Reproducibility IR7 collimators in 10 days

168 position sensors for 28 collimators. Only 1 sensor above 30 μm!

Reproducibility IR7 collimators in 10 days

Includes mechanical, motor and sensor stability! Specification is surpassed: major success for all involved! Possible to control at better than 30 μm level!

Issues Learnt and Fixed

Issues Learnt and Fixed

First Beam Loss Maps with LHC Beam

1.7 m

Tungsten (high Z)

Finishing Phase I Work with Beam

- LHC collimators used for stopping beam reliably around the ring. As such important pre-requisite for injection tests and first turn of beam.
- Unfortunately, 2008 beam experience with collimators was quite limited.
 However, system worked as specified mechanically and electronically.
- Next run: Set up collimators with beam for establishing passive protection and beam cleaning. Measure cleaning efficiency!
- Completed when phase I system shows predicted cleaning efficiency.
- Prediction:
 - Phase I collimation good for something around 20 MJ, ~10 times beyond present world record.
 - Prediction depends on multiple parameters to be verified with LHC operation.
- Work on phase II collimation is ongoing with work plan until 2014.
- Phase II prepared in tunnel and will allow nominal and higher intensities.

Tunnel: Phase II Beam Scraper Slots

LHC Collimation

Phase I Collimation Limit for Stored Energy vs Beam Energy

Phase I Collimation Intensity Limit versus Peak Loss Rate 5 TeV

Phase II Collimation Work Plan

- R&D on advanced, low impedance materials for LHC collimators.
- Design, prototyping and testing of phase II secondary collimators, implementing in-jaw pick-ups (improved operation) and various jaw materials (lower impedance). Construct 30 plus spares.
- Install HiRadMat beam test facility for beam verification of advanced collimator designs.
- Start R&D, prototyping and testing on hollow e-beam lens for LHC scraping: FNAL and CERN.
- Work out technical design for modified dispersion suppressors in IR3/7.
 Design and build new cryostat for missing dipole. R&D on "cryo-collimators" for modified dispersion suppressors and construction.
- Support R&D on advanced new concepts (crystal collimation, ...).
- Collaboration with 12 institutes in Europe, funded by EU (FP7).
 Collaboration with 3 institutes in U.S., funded by DOE (LARP).

Conclusion

- LHC collimation is designed to extend the intensity frontier by more than 2 orders of magnitude. It will not be easy: staged approach.
- Phase I is completed and already is the largest such system built to date. Worked as specified without beam: showed control and stability to better than 30 μm (width of human hair). Loss maps well behaved.
- Once LHC beam is back, phase I system will be set up and cleaning efficiency measured. Expect to reach around 20 MJ (10 times world record) with phase I collimation, but below nominal design.
- Phase II collimation has been worked out and will be implemented in steps until 2014 to upgrade performance. It will allow nominal and higher intensities (hopefully before 2014).
- Work is performed in international collaboration, supported by EU and DOE/LARP. Thanks to all who help us in this challenge!
- Please see many LHC collimation posters at PAC09 for more detail!

The Collimation Project Team & Close Collaborators

- Results on phase I collimation that I presented are outcome of lot of work performed over last 6 years by the following CERN colleagues:
 - O. Aberle, R. Assmann, J.P. Bacher, V. Baglin, G. Bellodi, A. Bertarelli, R. Billen, A.P. Bouzoud, C. Bracco, H. Braun, M. Brugger, S. Calatroni, F. Caspers, F. Cerutti, R. Chamizo, A. Cherif, E. Chiaveri, A. Dallochio, B. Dehning, M. Donze, A. Ferrari, R. Folch, P. Gander, A. Grudiev, N. Hilleret, E.B. Holzer, D. Jacquet, J.B. Jeanneret, J.M. Jimenez, M. Jonker, Y. Kadi, K. Kershaw, G. Kruk, M. Lamont, L. Lari, J. Lendaro, J. Lettry, R. Losito, M. Magistris, A. Masi, M. Mayer, E. Métral, C. Mitifiot, R. Perret, S. Perrolaz, V. Previtali, C. Rathjen, S. Redaelli, G. Robert-Demolaize, C. Roderick, S. Roesler, A. Rossi, F. Ruggiero, M. Santana, R. Schmidt, P. Sievers, M. Sobczak, K. Tsoulou, E. Veyrunes, H. Vincke, V. Vlachoudis, T. Weiler, J. Wenninger
- Crucial work also performed by collaborators at:

TRIUMF (D. Kaltchev), IHEP (I. Baishev & team), SLAC (T. Markiewicz & team), FNAL (N. Mokhov & team), BNL (N. Simos, A. Drees & team).