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Overview

� What is middleware?

� Why is middleware particularly important for control system’s 
longevity?

� What middleware is available today?

� What will be available in 30 years?

� What forces can render a middleware obsolete, and how to defend 
against them?

PAC 2009, Vancouver, 4th - 8th of May 2009 2



What is middleware?
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What is middleware?
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What does middleware do?

� Mapping of abstract interface definitions (e.g., CORBA IDL) to 
programming languages (e.g., Java, C++ etc. bindings).

� Marshaling/serialization of parameters and data structures (i.e., converting 
to/from binary form).

� Managing network connections (connect, disconnect, send, receive, 
reconnect).

� Concurrency: allowing ‘server’ processes (targets of invocations) to handle 
multiple requests from several network connections concurrently.

� Management of send/receive buffers.

� Implementation of higher-level protocols, such as reliable multicast.
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Middleware and longevity

� If a single component becomes obsolete, it can be re-implemented 
and re-deployed.
� Re-deployment without system-wide restart is usually supported by 

modern middleware.
� Software components don’t interact directly with each other, but via 

middleware.
� Problems in middleware affect the entire system.
� If middleware becomes obsolete, all software components need to be 

modified in some way!
� Gradual “upgrade” is difficult.

� Requires “gateways” between the “old” and the “new” middleware.
� Gateways can become performance/availability bottleneck, might be 

difficult to configure and maintain, etc.
� Some middlewares are more than just that – they are also control 

system frameworks.
� Replacing them requires even more intervention in the code.
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Today’s middleware (2009)

� Message-centric:
� JMS

� Data-centric:
� EPICS
� Data Distribution Service (DDS)

� Remote procedure call:
� ICE
� CORBA
� Java RMI
� Sun RPC
� DCOM
� Web Services
� Microsoft Windows Communications Foundation (WCF)
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Why does middleware “age”?

(Applies to other technologies as well.)

� No longer supported for a particular operating system, hardware platform or 
programming language.

� Significantly outperformed by a new middleware in any of these categories:
� Convenience of development.
� Performance (throughput, latency, scalability).
� Resource consumption (memory, CPU, power).
� User experience.
� (Useful) functionality.
� Maintenance costs.

� No longer “cool”/”hype”.

� No longer needed (e.g., radical shift in underlying technology).
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Anti-aging measures
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Anti-aging measures: open source

� Open source:
� “Use the source, Luke”

Can check the ultimate manual in case of unexpected behavior.
� Can fix bugs or adopt to new platform without waiting for the supplier.

� Drawbacks?
� Uncoordinated efforts lead to many half-solutions to a problem, which 

are usually incompatible. (A cultural thing.)

� When open source is not an option:
� Ensure an escrow agreement (get source code if vendor ceases 

support).
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Anti-aging measures: availability of support

� Support should be available:
� Training (in the beginning and when recruiting new personnel).
� Consulting (tackling difficult challenges in the right way).
� Development (adding features, fixing bugs).

� Support offered by:
� The community. Free, but no guarantees on availability or quality.
� Commercial support. Not free, but with guarantees.

� Community support:
� Size of the community.
� Eagerness of users to help others (cultural thing).
� Check mailing lists, forums, web sites, ... (state today and the trend).

� Commercial support:
� Market structure (monopoly vs. free market).
� Whom to choose? Check references in the domain.

� Example: EPICS
� Community support (tech-talk mailing list)
� Commercial support (Observatory Sciences, Cosylab, Alceli, etc.)
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Anti-aging measures: economy of scale

� More users => more “budget” for development:
� drives down “cost per user”,
� increases the number of available features.

� Increased chance that:
� a particular platform/device is supported,
� someone else already fixed the bugs,
� someone took the time to write documentation.

� Less likely to “go out of business”.

� Ideally: other users are in the same boat as you.
� E.g., large experimental facilities with similar “time-to-live”

requirements.
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� All technologies might eventually die-out.
� Try to avoid one that is dying now.

� Some technologies might not make it at all.
� The chasm.

� Safe bet: follow the sheep!

Anti-aging measures: maturity
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Anti-aging measures: maturity

� Safe bet: follow the sheep!
(Unless they head off the cliff. ☺ )
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� Some technologies are over-marketed (the hype).
� Everyone wants to use them “to be cool”.
� Might be a good choice, but can get over-used/abused (e.g., using XML 

as a programming language).

Anti-aging measures: maturity

15PAC 2009, Vancouver, 4th - 8th of May 2009



� If middleware becomes inadequate, it might need to be replaced.
� Most work would be adjusting all applications.

Anti-aging measures: abstraction layer
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Anti-aging measures: abstraction layer

� Define a thin middleware abstraction layer.
� A simple API.
� Applications don’t access middleware directly, only through the 

abstraction layer.
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Middleware in 30 years…

The proverbial crystal ball:
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Foreseeable future

� Support for IP multicasting
� Already supported by some data-centric middleware
� Scalable monitors

� Hard real-time networking
� Some work already done (e.g., real-time CORBA), but does not 

make use of hard real-time network stacks
� Real-time network stacks not yet standardized (RTnet, NAPI for 

Linux)

� Convergence of approaches:
� Some RPC-style middlewares already support message-

oriented approach (e.g., CORBA Notification Service), though 
not optimally

� RPC-style on top of data-centric approach
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Conclusion

� Future is impossible to predict, but we can take some precautions.

� Some criteria for longevity consideration:

� Proprietary vs. “public domain”
� Open source
� Open standard
� Quality and cost of support
� Economy of scale
� Simplicity
� Maturity
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