
Longevity of Accelerator Control 
System Middleware 

Klemen Žagar
klemen.zagar@cosylab.com



Overview

� What is middleware?

� Why is middleware particularly important for control system’s 
longevity?

� What middleware is available today?

� What will be available in 30 years?

� What forces can render a middleware obsolete, and how to defend 
against them?

PAC 2009, Vancouver, 4th - 8th of May 2009 2



What is middleware?

3PAC 2009, Vancouver, 4th - 8th of May 2009

Control LoopUser Interface

Ethernet

Microsoft Windows
.NET application (C#)

Linux
Java application

Sensor
Actuator

VxWorks,
C application

Real-time Linux,
C++ application

TCP/IP

UDP/IP



What is middleware?

4

User Interface

Sensor
Actuator

Control Loop

PAC 2009, Vancouver, 4th - 8th of May 2009



What does middleware do?

� Mapping of abstract interface definitions (e.g., CORBA IDL) to 
programming languages (e.g., Java, C++ etc. bindings).

� Marshaling/serialization of parameters and data structures (i.e., converting 
to/from binary form).

� Managing network connections (connect, disconnect, send, receive, 
reconnect).

� Concurrency: allowing ‘server’ processes (targets of invocations) to handle 
multiple requests from several network connections concurrently.

� Management of send/receive buffers.

� Implementation of higher-level protocols, such as reliable multicast.

5PAC 2009, Vancouver, 4th - 8th of May 2009



Middleware and longevity

� If a single component becomes obsolete, it can be re-implemented 
and re-deployed.
� Re-deployment without system-wide restart is usually supported by 

modern middleware.
� Software components don’t interact directly with each other, but via 

middleware.
� Problems in middleware affect the entire system.
� If middleware becomes obsolete, all software components need to be 

modified in some way!
� Gradual “upgrade” is difficult.

� Requires “gateways” between the “old” and the “new” middleware.
� Gateways can become performance/availability bottleneck, might be 

difficult to configure and maintain, etc.
� Some middlewares are more than just that – they are also control 

system frameworks.
� Replacing them requires even more intervention in the code.

6PAC 2009, Vancouver, 4th - 8th of May 2009



Today’s middleware (2009)

� Message-centric:
� JMS

� Data-centric:
� EPICS
� Data Distribution Service (DDS)

� Remote procedure call:
� ICE
� CORBA
� Java RMI
� Sun RPC
� DCOM
� Web Services
� Microsoft Windows Communications Foundation (WCF)

7PAC 2009, Vancouver, 4th - 8th of May 2009



Why does middleware “age”?

(Applies to other technologies as well.)

� No longer supported for a particular operating system, hardware platform or 
programming language.

� Significantly outperformed by a new middleware in any of these categories:
� Convenience of development.
� Performance (throughput, latency, scalability).
� Resource consumption (memory, CPU, power).
� User experience.
� (Useful) functionality.
� Maintenance costs.

� No longer “cool”/”hype”.

� No longer needed (e.g., radical shift in underlying technology).

8PAC 2009, Vancouver, 4th - 8th of May 2009



Anti-aging measures

9PAC 2009, Vancouver, 4th - 8th of May 2009



Anti-aging measures: open source

� Open source:
� “Use the source, Luke”

Can check the ultimate manual in case of unexpected behavior.
� Can fix bugs or adopt to new platform without waiting for the supplier.

� Drawbacks?
� Uncoordinated efforts lead to many half-solutions to a problem, which 

are usually incompatible. (A cultural thing.)

� When open source is not an option:
� Ensure an escrow agreement (get source code if vendor ceases 

support).

10PAC 2009, Vancouver, 4th - 8th of May 2009



Anti-aging measures: availability of support

� Support should be available:
� Training (in the beginning and when recruiting new personnel).
� Consulting (tackling difficult challenges in the right way).
� Development (adding features, fixing bugs).

� Support offered by:
� The community. Free, but no guarantees on availability or quality.
� Commercial support. Not free, but with guarantees.

� Community support:
� Size of the community.
� Eagerness of users to help others (cultural thing).
� Check mailing lists, forums, web sites, ... (state today and the trend).

� Commercial support:
� Market structure (monopoly vs. free market).
� Whom to choose? Check references in the domain.

� Example: EPICS
� Community support (tech-talk mailing list)
� Commercial support (Observatory Sciences, Cosylab, Alceli, etc.)

11PAC 2009, Vancouver, 4th - 8th of May 2009



Anti-aging measures: economy of scale

� More users => more “budget” for development:
� drives down “cost per user”,
� increases the number of available features.

� Increased chance that:
� a particular platform/device is supported,
� someone else already fixed the bugs,
� someone took the time to write documentation.

� Less likely to “go out of business”.

� Ideally: other users are in the same boat as you.
� E.g., large experimental facilities with similar “time-to-live”

requirements.

12PAC 2009, Vancouver, 4th - 8th of May 2009



� All technologies might eventually die-out.
� Try to avoid one that is dying now.

� Some technologies might not make it at all.
� The chasm.

� Safe bet: follow the sheep!

Anti-aging measures: maturity

13PAC 2009, Vancouver, 4th - 8th of May 2009



Anti-aging measures: maturity

� Safe bet: follow the sheep!
(Unless they head off the cliff. ☺ )

14PAC 2009, Vancouver, 4th - 8th of May 2009



� Some technologies are over-marketed (the hype).
� Everyone wants to use them “to be cool”.
� Might be a good choice, but can get over-used/abused (e.g., using XML 

as a programming language).

Anti-aging measures: maturity

15PAC 2009, Vancouver, 4th - 8th of May 2009



� If middleware becomes inadequate, it might need to be replaced.
� Most work would be adjusting all applications.

Anti-aging measures: abstraction layer

16PAC 2009, Vancouver, 4th - 8th of May 2009

Application 1

Middleware A

Application 2

Middleware A

Application N

Middleware A

Application 1

Middleware B

Application 2

Middleware B

Application N

Middleware B

All applications 
need to change!



Anti-aging measures: abstraction layer

� Define a thin middleware abstraction layer.
� A simple API.
� Applications don’t access middleware directly, only through the 

abstraction layer.

17PAC 2009, Vancouver, 4th - 8th of May 2009

Application 1

Middleware A

Application 2

Middleware A

Application N

Middleware A

AbstractionAbstractionAbstraction

Application 1

Middleware B

Application 2

Middleware B

Application N

Middleware B

Abstraction Abstraction Abstraction

Only the 
abstraction layer 
needs to change.



Middleware in 30 years…

The proverbial crystal ball:

18PAC 2009, Vancouver, 4th - 8th of May 2009



Foreseeable future

� Support for IP multicasting
� Already supported by some data-centric middleware
� Scalable monitors

� Hard real-time networking
� Some work already done (e.g., real-time CORBA), but does not 

make use of hard real-time network stacks
� Real-time network stacks not yet standardized (RTnet, NAPI for 

Linux)

� Convergence of approaches:
� Some RPC-style middlewares already support message-

oriented approach (e.g., CORBA Notification Service), though 
not optimally

� RPC-style on top of data-centric approach

19PAC 2009, Vancouver, 4th - 8th of May 2009



Conclusion

� Future is impossible to predict, but we can take some precautions.

� Some criteria for longevity consideration:

� Proprietary vs. “public domain”
� Open source
� Open standard
� Quality and cost of support
� Economy of scale
� Simplicity
� Maturity

20PAC 2009, Vancouver, 4th - 8th of May 2009



21

Thank You for Your Attention


	Longevity of Accelerator Control System Middleware 
	Overview
	What is middleware?
	What is middleware?
	What does middleware do?
	Middleware and longevity
	Today’s middleware (2009)
	Why does middleware “age”?
	Anti-aging measures
	Anti-aging measures: open source
	Anti-aging measures: availability of support
	Anti-aging measures: economy of scale
	Anti-aging measures: maturity
	Anti-aging measures: maturity
	Anti-aging measures: maturity
	Anti-aging measures: abstraction layer
	Anti-aging measures: abstraction layer
	Middleware in 30 years…
	Foreseeable future
	Conclusion

