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Principle of Laser Wire Monitor

. Principle of beam size measurement 1600
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. Input a focused laser beam transversely
across the electron beam.
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Measure flux of Compton scattering signal
as a function of laser position.

. Advantage of laser based monitors
not damaged by high intensity beam
non-invasive measurement
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Technical challenges

« To obtain enough signal
. high laser power (100W for storage ring, T00MW for single path)

. To realize high spatial resolution
. thin laser width (<~5um)
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. stable and well known laser width for subtracting its contribution
. Two possible solutions

. build-up cavity scheme (compact and suitable for storage ring)
. high power pulsed laser (single path, low repetition rate beam line)
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Accelerator Test Facility in KEK

ATF is a test accelerator to produce a low emittance beam required for LC.
Damping ring LW (Kyoto university)

. Build-up cavity type LW measures equilibrium condition of the ring.

Extraction line LW (Royal Holloway university and Oxford university)

. High power pulsed LW development aiming to demonstrate ~micron resolution.
Electron beam to be measured: <10um (vertical), 100um (horizontal)
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Build-up Cavity scheme




PrlnC|ple of optlcal CaVI'ty (power enhancement)

. Optical cavity

. closed optical path which consists of mirrors
facing each other (

,  Store |
: : /\

/J

kit

laser power builds-up inside the cavity v

Rcav

much higher power than commercial laser Reflectio
source is available.

Transmission
{ tirz rir2ty }
n

t F217

Realization of power enhancement

. resonance condition (standing wave )
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Principle of optical cavity (mode profile)

Boundary condition introduced by the cavity mirrors
defines the structure of the laser beam allowed inside
the cavity.

. Once the cavity structure is rigidly assembled, laser
wire size should be stable.

Waist size (w0O) is controlled by the curvature of the
mirrors and the cavity length.

. Small wO is realized at very close to the unstable limit.
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Setup of the laser system

. laser source: NPRO (lightwave model 142)

. wavelength 532nm, power 300mW
. Cavity:
length 40mm, mirror-o 20mm
Finesse 600 (effective power 100W)
wO 12um (o=6um (wO/2))
piezo control speed ~kHz
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Layout of the system

Laser system

. two cavity chambers (vertical and horizontal) vertical-wire
. . chamber
. laser path is switched for each measurement Y it . horizontal-wire
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Measurement scheme

. Counting method

. typical signal rate (~kHz), whereas rin e
. . . . cavity transmission
revolution is 2MHz. Each signal is low |

single photon.

Realize fast laser on/off switching by
modulating cavity resonance
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Measurement example

. Typical measurement
. 10um step, 10sec/position
. back and force measurement
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beam current [mA]

. ©bmin. to complete a measuement
. Contribution of laser size subtraction

« 0O (laser) estimation

. cavity mode property
« waist scan by electron beam
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Measurement example
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Multi-bunch mode
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. possible to measure signals from each
bunch in a multi-bunch train (2.8nsec
spacing) by timing identification
intra-train beam size variation
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Higher-order mode for higher resolution

. Smaller w0 is not straight forward (diffraction
limit)
Other cavity resonances that have smaller spatial
structure
. TEMOT (vertical dipole mode)
. resonance condition is shifted from TEMOO
. TEMITO contaminates TEMOT

Scanning by the dipole mode laser, central dip of
the measured shape responses beam size smaller
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Efficient excitation of higher-order mode

. Two ideas to control TEMOT _ o

mode
. SN e ~— mirror
. mode split between

.—— end plate
TEMOT and TEM10 by
slight bending mirrors

mirror housing

mode converter to modify
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This test was done with larger wO setup
to match usual ATF beam size.

both laser size, e-beam size are free
parameters.
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Bulld-up cavity with pulsed laser

!

pulsed laser beam

For more efficient laser-beam collision

. Pulsed lasers have higher peak power than

cw lasers electron

_ _ _ beam
Build-up cavity works with a pulsed laser

. additional conditions

. repetition rate should match with cavity’s
round trip time
« synchronization with the beam
Cavity length is defined by beam repetition
(357MHz), mirror curvature is the only
parameter to control mode profile (if 2 mirror
cavity case)

«—p
cavity
control




Setup of pulsed cavity

cavity length=21cm (7 14MHz), two folded 357MHz cavity

finesse 500, wO 250 um
wavelength 1064nm, pulse dulation 7.3ps, 500mW passive mode-lock laser

installed in ATF at the same location of cw laser wire
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Measurement system

Demonstrated stable collision with
beam. (7.3ps laser and 30ps beam in oscillator

phase shifte (357 MHz, 10MHz sync.

90deg CI’OSSI ng) locked to beam]) {timing reference of

the accelerator's master oscillator)
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Self-start recirculation system

resonance control

—
laser source i i

There can be many applications with a high

finesse build-up cavity. et medium
Higher finesse in external cavity is difficult H
to control

band-pass fil
« ~1000 can be controlled with and-pass filter
mechanical feedback JL g

. >10000 may need new ideas /|
Oscillator scheme < < -

amplifier

. simple oscillator with a laser medium

inside the cavity is not suitable for high
POWE.
recirculation scheme with external laser

amplifier can realize high finesse and

>
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Self-start recirculation system (demonstration)
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. amplifier gain > round trip loss
. high gain fiber laser ampilifier
Bench test demonstration

. finesse 30000 cavity
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High power pulsed laser scheme




Pulse Laser Wire (laser)

In single path beam line of low
repetition rate. Higher laser power is
needed.

With a high power pulsed laser
system, enough laser power to have
>1000 Compton scattering in single
collision.

Since there is no laser mode control
mechanism like optical cavity, careful s
laser profile measurement systemis Eectron b

Detector

needed before the interaction . - Compron s | el

Laser-profiling CCD-camera Dipgl}till.\l{illgnﬂ Fulse length

vacuum chamber, -

Nd:YAG Laser parameters

Laser image on a paper screen
combined with calibration image
(lcm separation between points)

1 m focal length diagnostics lens Paper screen marked with a calibration pattern.

Sampling beam-splitter
Sampling beam-splitter, Laser-profiling CCD-camera with standard camera lens



Interaction chamber design

Aiming to demonstrate small spot
size ~um

In order to focus as small as
possible, smaller F# is required.

. place the final lens close to the
chamber

. large aperture




Focusing lens design

. The beam size at the focus is controlled by
the input beam size.
The minimum achievable spot size is 2.2 um
with a ideal input laser. It is balance of =
diffraction limit and aberration effects.
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Need to care the damage of windows due to
ghost reflection of high power laser
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Schematic design of the aspheric lens. Input beam W [mm]
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Measurement example

. 0o(meas) = 3.65 um
. O (beam) is calculated to be 2.91 um assuming o (laser) = 2.2 um.
. Quality of the laser beam has to be improved.

u-Axis (M"=1.Q2.W“=44.G,nm.2 = 83mm)

:

............... v-Axis (M *=1.66, W_ =306um.Z_ =101mm)
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Summary

. Two types of laser wire monitors have been developed at ATF
. Build-up cavity scheme (at damping ring)
« Oumrms size, 100W effective power
« multi-bunch measurement demonstration
. resolution upgrade with higher-order mode
. variations: pulsed cavity, self-start system
. High power pulsed laser scheme (at extraction line)
. lens system to realize 2.2 um spot size
. 3.6bum measured size was demonstrated




