
PyPLC, A VERSATILE PLC-TO-PC PYTHON INTERFACE

S. Rubio-Manrique, G. Cuní, D. Fernandez-Carreiras, Z. Reszela, A. Rubio,
CELLS-ALBA Synchrotron, Barcelona, Spain

Abstract
The PyPLC Tango Device Server provides a developer-

friendly dynamic interface to any Modbus-based control
device. Raw data structures from PLC are obtained
efficiently and converted into highly customized attributes
using the python programming language. The device
server allows to add or modify attributes dynamically
using single-line python statements. The compact python
dialect used is enhanced with Modbus commands and
methods to prototype, simulate and implement complex
behaviours. As a generic device, PyPLC has been
versatile enough to interact with PLC systems used in
ALBA Accelerators as well as to our Beamlines SCADA
(Sardana). This article describes the mechanisms used to
enable this versatility and how the dynamic attribute
syntax allowed to speed up the transition from PLC to
user interfaces.

INTRODUCTION
ALBA[1], member of the Tango Collaboration[2][3], is

a third generation Synchrotron in Barcelona, Europe. It
provides light since 2012 to users through its 7
beamlines,with 2 more under construction.

Programmable Logic Controllers from several vendors
(B&R, Pilz, …) are used for acquisition, protection and
motion within our Tango Control System[4]. PLC's are
the main component of equipment and personnel
protection systems, but they are also used in accelerators
and beamlines for vacuum/temperature diagnostics and
motion control. The most complex system managed by
PLC's is the Equipment Protection System (EPS)[5].

Equipment Protection System at ALBA
The EPS is an autonomous system ensuring the safe

operation of all elements in ALBA accelerators and
Beamlines. It generates both interlocks and operation
permits, following the logics previously defined between
the Control section and the Accelerators and Experiments
divisions and programmed by Control engineers.

EPS uses 58 B&R CPU's and 110 periphery cabinets to
collect more than 7000 signals. In addition to the main
purpose of protection, several hundreds of signals
distributed across the whole system are acquired for
diagnostics and control of movable elements:
temperatures, vacuum sensors, position encoders and
switches, electrovalves, ...

Other PLC-based Systems
The Modbus protocol and Tango devices are also used

to control PLC's in the RF circulators, bakeout
controllers, water cooling system, air conditioning in the
experimental hutches and overall Personnel Safety

Systems, on which the Tango Control System have just
read access. The same control interface is used to
communicate with all this subsystems, with certain
customization depending on the control needs.

PLC TANGO DEVICES
An interface between Tango Control System and our

PLC-based subsystems was needed for three main
purposes:

• Supervision of autonomous systems based on PLC's
(EPS, PSS).

• Configuration of the EPS settings and interlock
thresholds during commissioning.

• Integrate critical and diagnostics signals into our
Control services like Archiving, Taurus UI, Alarms,
Beamlines SCADA (Sardana) [6][7].

To achieve a successful integration of the PLC signals
into our control system it was needed to automate the
creation of Tango Attributes in the PLC device servers.
The commissioning work-flow required a regular update
of I/O and variables lists in the PLC's, and existing UI's
and services like archiving had to be capable to keep pace
with each update of the attribute list.

Figure 1: PyPLC Device Architecture.

DEVELOPING A PLC TANGO DEVICE
The first device server developed at ALBA for

communicating with PLC's was a C++ device server,
ModbusPLC, running on top of the Modbus Device
developed at the ESRF; that already implements all basic
Modbus commands. The ModbusPLC C++ Tango device
allowed to create and remove attributes depending on
Tango property values [8], exporting as many integer
attributes as 16 bits registers were mapped in Modbus.

This implementation presented several drawbacks:

• Hides the diversity of signals available from the PLC
(digital inputs, flag registers, integers, 16 bits floats,
32 bit values spanning multiple registers).

• Too rigid for showing complex elements (needed
many attributes to represent a 3-position valve).

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO011

Data Acquisition

ISBN 978-3-95450-146-5

179 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• Triggered 1 Modbus command per attribute read, for
a typical beamline PLC with hundreds of attributes it
meant a full refresh every 30 seconds or so.

PyPLC, a Dynamic PyTango Device Server
PyTango, the Python binding of Tango, is the common

framework of development at ALBA [9]. The PyPLC
python device server overcomes the limitations of
ModbusPLC, providing the high versatility of python [10]
above the robustness of the reliable Modbus C++ server
(Fig.1).

Advantages of PyTango device servers in python are:

• Python is a dynamically typed language, making
devices prototyping and extension much faster.

• Objects and libraries are mutable, multiple
inheritance and classes are modifiable in runtime.

• Device servers can be executed in any OS with no
need of compiling or packaging.

• Tools like SWIG or Boost allow to use C++ APIs
libraries from python.

• In fact PyTango is just a layer above Tango C++,
which means that any feature/patch of mainstream
Tango is also available in PyTango.

• Python allows to execute string formulas as python
code, enabling complex Dynamic Attributes
declaration on runtime.

Taking profit of these advantages, we developed a
DynamicDS[11] template for Tango Devices that
provided dynamic attribute type creation, customized
calculations, configurable state composing and attribute-
grouping. All these features being achieved through an
easy syntax accessible to machine operators and
scientists.

PyPLC inherits from DynamicDS template [12].
Creation of attributes is done writing new attribute
formulas into the DynamicAttributes property of the
Tango database, a process that can be done manually or
automated by scripts.

Table 1: PyPLC Attribute Formulas, Int Array and a
Writeable Boolean Flag.
TEMPERATURES=
 DevVarLongArray(Regs(7800,100))
DIO_01= bool(
READ and Flag(80,7) or
WRITE and WriteFlag(81,7,int(VALUE)))

To enable the use of Modbus commands in the attribute
formulas, the PyPLC exports all the commands needed
for accessing Modbus variables (Read/Write
Input/Holding Registers) and PLC variable type
(Bit/Coil/Flag/Int/Long/Float/IeeeFloat/Double). Those
methods can be used inside attributes (Table 1) or
commands (Table 2) declaration to access any type of
variable mapped in Modbus addresses.

Table 2: PyPLC Command Formulas
Open_PNV01=(WriteBit(193,2,1),1)[-1]

Close_PNV01=(WriteBit(193,1,1),0)[-1]

Optimizing Modbus Communications
The Modbus devices used at ALBA (mostly B&R plc's)

show several limitations in the implementation of their
Modbus communications. The maximum amount of
registers to be acquired in a single modbus exchange is
120. And those communications take between 120 ms and
160 ms independently of the number of addresses read on
each command.

To avoid these problems, PyPLC enhances the Modbus
Tango Device providing smart mapping of the PLC
memory. It allows to optimize ethernet/ serial
communications and setup selective address refresh when
needed. The memory areas are read and allocated in the
device server as arrays, each of them dedicated to a
certain type of data (boolean, int, float, double). Attributes
of the PyPLC device will not access the Modbus
communications but this arrays mapped in memory
instead.

Actually the refresh of a typical ALBA PLC is about 3
seconds for a PLC with 2000 registers mapped to 300
attributes. Although faster refresh of certain areas of the
memory can be setup up to 300 ms.

EXTENDING PYPLC

Exporting PLC Variables to PyPLC
When programming the PLC's, the controls engineer

load variables information retrieved from our cabling and
controls MySQL database [13]. Visual basic macros are
used to update the PLC program using pre-defined logic
blocks and the set of signals connected to each CPU and
peripherals.

Those same Visual basic macros generate .csv files that
are used by the EPS Taurus UI and PyPLC device server
to load variables lists and Dynamic Attributes declaration.

Thanks to that, Taurus User Interfaces and PyPLC
attributes are updated whenever the PLC program is
modified, with no need of editing the source code.

Many analog and digital signals in ALBA beamlines
have been exported to the experiment control framework,
Sardana. The Sardana suite allows to add Tango
controlled hardware as experimental channels, being able
to use them as I/O or experimental data (e.g. temperatures
and vacuum pressures). Limited motion control have been
implemented using PyPLC, which allowed direct control
from Sardana macros used by scientists.

FPO011 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

180C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Acquisition

Extending PyPLC Functionality
PyPLC provides a common interface to any device that

uses the Modbus protocol, specific States and Status
messages can be linked to PLC values using the same
syntax of dynamic attributes. But, certain subsystems
require a more specific interface to express intermediate
states like warning, external interlocks, complex error
codes, attributes managed by multiple registers (e.g.
multiple-stage pneumatic elements).

This is achieved subclassing PyPLC into new Tango
Devices that extend its functionality, in the same way that
PyPLC inherits from DynamicDS. Those classes are
AlbaPLC (customized to EPS state machines), PLCValve
for pneumatic valves and FSOTR for 3-position
fluorescence screens. Those classes use Tango Qualities
to complement the raw attribute values, passing the
information regarding Alarm/Warning/Moving limits and
positions with each value sent to clients.

Higher-level procedures involving several Tango
devices are implemented using macros from PANIC
Alarm System[14][15] or Sardana SCADA. Those macros
allow the scientists to program automated actions on
elements controlled by the EPS (valves, shutters) during
experiments.

CONCLUSSION
PyPLC Tango Device provides a common interface to

all PLC's at ALBA using the Modbus protocol. This
developer-friendly interface allowed dynamic and effort-
less integration of new PLC signals into our Archiving,
Alarm System and Beamlines SCADA (Sardana). This
work-flow enabled by PyPLC reduced the time needed to
upgrade or modify PLC systems in Beamlines.

ACKNOWLEDGEMENTS
Many former ALBA engineers have collaborated in the

PLC-related projects in the last 6 years: D.Fernández,
A.Rubio, R.Ranz, R.Montaño, R.Suñé, M.Niegowski,
M.Broseta and J.Villanueva. The collaboration of Tango
core developer, Emmanuel Taurel, was fundamental in
the development of Dynamic Attributes templates and
debugging of PyPLC performance.

REFERENCES
[1] ALBA website: http://www.cells.es
[2] TANGO website: http://www.tango-controls.org
[3] A.Götz, E.Taurel et al., “TANGO V8 – Another Turbo

Charged Major Release”, ICALEPCS'13, San
Francisco, USA (2013)

[4] R.Ranz et al., “ALBA, The PLC based Protection
Systems.”, ICALEPCS'09. Kobe, Japan (2009)

[5] D.Fernández-Carreiras et al., “Personnel protection,
equipment protection and fast interlock systems”,
ICALEPCS'11, Grenoble, France (2011)

[6] T.Coutinho et al., "Sardana, The Software for
Building SCADAS in Scientific Environments",
ICALEPCS'11. Grenoble, France (2011)

[7] SARDANA website: http://www.sardana-controls.org
[8] R.Sune, E.Taurel and S.Rubio, “Adding Dynamic

Attributes to a C++ Device Server”, available at
www.tango-controls.org (2008)

[9] D.Fernández et al., “Alba, a Tango based Control
System in Python”, ICALEPCS'09, Kobe, Japan
(2009)

[10] S.Rubio et al., “Dynamic Attributes and other
functional flexibilities of PyTango”, ICALEPCS'09,
Kobe, Japan (2009)

[11] Fandango website: http://www.tango-controls.org/
Documents/tools/fandango/fandango

[12] PyPLC website: http://www.tango-controls.org/
device-servers/alba/pyplc-device-server/

[13] D. Beltran et al., “ALBA Control And Cabling
Database”, ICALEPCS'09, Kobe, Japan (2009)

[14] S.Rubio et al., “Extending Alarm Handling in
Tango”, ICALEPCS'11, Grenoble, France (2011)

[15] S.Rubio et al., “PANIC, a Suite for Visualization,
Logging and Notification of Incidents”, PCaPAC'14,
Karlsruhe, Germany (2014)

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO011

Data Acquisition

ISBN 978-3-95450-146-5

181 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

