
A REAL-TIME DATA LOGGER FOR THE MICE SUPERCONDUCTING
MAGNETS

J.T.G. Wilson, STFC Daresbury Laboratory, Warrington, UK

Abstract
 The Muon Ionisation Cooling Experiment (MICE)
being constructed at STFC’s Rutherford Appleton
Laboratory will allow scientists to gain working
experience of the design, construction and operation of a
muon cooling channel. Among the key components are a
number of superconducting solenoid and focus coil
magnets specially designed for the MICE project and
built by industrial partners.

During testing it became apparent that fast, real-time
logging of magnet performance before, during and after a
quench was required to diagnose unexpected magnet
behaviour. To this end a National Instruments Compact
RIO (cRIO) data logger system was created, so that it was
possible to see how the quench propagates through the
magnet. The software was written in Real-Time
LabVIEW and makes full use of the cRIO built-in FPGA
to obtain synchronised, multi-channel data logging at
rates of up to 10 kHz.

This paper will explain the design and capabilities of
the created system, how it has helped to better understand
the internal behaviour of the magnets during a quench and
additional development to allow simultaneous logging of
multiple magnets and integration into the existing EPICS
control system.

MICE
The Muon Ionisation Cooling Experiment (MICE) is an

international collaboration of particle and accelerator
physicists from Europe, the US and Japan. It seeks to
design, build and operate a muon ionisation cooling
channel, which given the consequence of the short muon
lifetime that makes traditional cooling techniques
inappropriate, is an essential technology for the design of
a muon collider or neutrino factory[1].

The MICE cooling channel is of the same design as the
cells proposed for the neutrino factory and consists of 3
absorber coil modules with low density absorbers inside a
focusing magnetic field and 2 RF-coupling coil modules.
It is being built on a dedicated muon beam from the ISIS
accelerator at Rutherford Appleton Laboratory.

MAGNET QUENCHES
Upon testing of the first Focus Coil magnet a series of

unexpected magnet quenches were occurring meaning
that the magnets were not able to reach the power levels
specified by the design requirements.

There was already a quench detection system installed,
however, this was only designed for machine protection,

shutting down the magnets in the event of a quench and
was thus not designed to monitor all of the individual coil
power levels. This also led to doubts as to whether there
were actually magnet quenches occurring or if the quench
detection system was not functioning correctly. To be able
to properly address the unexpected quenches and prove
the integrity of the quench detection system it was
decided that a further diagnostic tool was required to
monitor the power levels on each of the coils of the
magnet so that the starting point of a quench could be
determined and it’s propagation through the rest of the
magnet analysed.

The proposed solution to this was to create a standalone
logging system that could capture magnet performance
data before, during and after a quench. Because of the
unexpected and unpredictable nature of the magnet
quenches (testing could be running for hours before
experiencing a quench) a system that simply logged the
values from the magnets as soon as they were turned on
would create far too much unnecessary data. Similarly, a
system that started logging only once it had received the
signal from the quench detector would miss vital
information because data showing the quench starting to
build up on the coils was needed for diagnosis of the
fault. The solution to this was to have a system with a
‘rolling capture window’. This ‘window’, or buffer, would
temporarily save the data (i.e. in RAM) and once the
buffer was full would start to overwrite the oldest data in
the buffer with the newest. This would allow for the
system to have already captured and be temporarily
holding the data showing a voltage differential building
up to a quench which, after receiving a signal from the
quench detection system, it could amend with the data
during and after a quench.

THE DATA LOGGER SYSTEM

Hardware
CompactRIO is a reconfigurable embedded control and

acquisition system. The CompactRIO system’s rugged
hardware architecture includes I/O modules, a
reconfigurable FPGA, and an embedded controller [2].

For this application it was decided that NI 9222 4
channel C-series modules [3] were needed, despite the
greater cost than other similar analog cards, to achieve the
necessary sample rates. These cards can provide up to 500
kS/s per channel at a 16-bit resolution. These were
coupled with the NI 9103 chassis [4] which provides 4 C-
series module slots and the NI 9012 controller [5].

Additional external electronics were needed to reduce
the input voltages down to the +/- 10 Volts that the NI

FPO012 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

182C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Acquisition

9222 cards can handle. All of this was then packaged up
into a 4U rack mountable crate.

Software
The cRIO is designed to be programmed using

LabVIEW. LabVIEW is a graphical programming
language created by National Instruments and is designed
to make programming and configuration of their hardware
quicker and simpler for the user.

Specific modules of NI LabVIEW were needed for this
project, the LabVIEW real-time and LabVIEW FPGA
modules which allow for configuring the on-board FPGA
chassis using the same tools and methods available in
standard LabVIEW as well as programming the controller
for real-time processing by providing a real-time
operating system.

The overall design of the software follows the State
Machine architecture [6]. This is one of the fundamental
architectures commonly used by LabVIEW programmers
to implement complex decision-making algorithms that
can be expressed as state diagrams or flowcharts. Each
step of the program, e.g. Initialisation or buffering data,
can be defined as a state of the system and depending on
either user input or internal calculations will lead onto the
next state. This allows for a very modular programming
design where the processing is not fixed to a straight
processing path but can quickly jump to different states
when needed. This is achieved in LabVIEW by use of a
case structure contained inside a while loop where each
state of the program is a different case of the case
structure as shown in Fig. 1. An enumerated value can
then be used with a shift register to dictate which case or
state will be processed next as a shift register will pass the
data input to it to the next iteration of the while loop. Shift
registers are also used to pass other data between the
different cases of the case structure.

The cases defined for this system are ‘Ready’ where the
data logger is waiting for the user to input the desired
values for each of the operational parameters; sample rate,
pre-trigger sample time (the length of time the user wants
to be able to see a quench building up), post-trigger
sample time (the length of time the user wants to see after
the quench detection signal has been received) and the
name to be used for the next log file. The GUI (called
Front Panel in LabVIEW) is accessed using the NI
Remote Panel Server [7] which allows the user to access
the front panel through a web browser. As nearly all PC
operating systems come with a web browser as standard
this removes the need for each computer wishing to
access the data logger having a LabVIEW program or
executable that can connect to the variables and allow
configuration.

Once the user has finished selecting these values and
pressed the start button the program moves into the
‘Initialise’ case in which the rolling buffer is created
based on the sample rate, the pre-trigger sample time and
the post-trigger sample time. It is also the where the log
file (of TDMS data type [8]) is created and the FPGA
configured.

Next the data logger starts acquiring data and storing it
to the buffer. The acquisition and some basic scaling of
the data is done at the FPGA level as this provides the
highly synchronised data acquisition and the high
throughput needed to deal with 16 channels of data at up
to 10kHz per channel. The output from the FPGA is
stored in an internal FIFO buffer that can be accessed by
the controller. Due to the limited space on this FPGA
FIFO buffer the controller needs to read off the data in
blocks of 300 samples and then store this in its own RAM
buffer. This RAM buffer can provide for up to 450,000
samples per channel before needing to overwrite old data.
This case in the program is also when the data logger is
waiting to receive a trigger from the quench detection

Figure 1: Three of the cases from the Data Logger case structure to illustrate the State Machine architecture.

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO012

Data Acquisition

ISBN 978-3-95450-146-5

183 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

system. This trigger comes into channel 16 of the data
logger and is captured in the same way as the coil data as
this allows for it to be saved in the log file synchronised
to the coil data. To detect the trigger from the quench
detection system a separate process runs in parallel to the
data buffering, checking channel 16 for the voltage
change that indicates a trigger. Once the trigger is
detected the data buffering process continues for the post-
trigger sample time specified by the user and then the
program proceeds to the ‘Saving’ case.

The ‘Saving’ case simply takes data off the buffer and
saves it to the TDMS log file created in the Initialise case.

Once all the data has been saved the program moves to
the final case where it releases all of the resources it was
using and deletes the DRAM buffer ready for the user to
specify new values for the configurable parameters and
start the logging process again. The users can then FTP
into the non-volatile memory of the controller to access
the log file.

RESULTS
The data logger was successfully used to prove the

integrity of the quench detection system and to show that
the magnets consistently, when pushed to the desired
operational levels, suffer from a quench. When delivered
the second focus coil magnet was tested under the same
conditions, using the data logger as a diagnostic tool, and
it did not suffer any unexpected issues proving that there
was a fault in the first focus coil magnet. The first focus
coil is now undergoing repairs to attempt to fix the issue.

FUTURE WORK
Due to the success of the data logger at helping to

diagnose the fault in the focus coil it has been decided to
integrate it into the final system as a permanent diagnostic
tool. Other systems of the same design are being created
to monitor other magnets on the machine as well.

Because of the limited size of the RAM on the NI 9012
controller care has to be taken to ensure that the desired
buffer size does not exceed what the controller is capable
of. Improvements are being made to limit the user to
sample rates and sample times that the controller will be
able to manage without error. Also, considerations are
being made as to the added value of investing in a higher
specification controller with more RAM available.

Usage of the data logger also pointed out another
weakness in its design that is being addressed. As the data
logger is designed to be a standalone system it is up to the
user to extract the desired log files from it when they want
them. However, this revealed a potential flaw as if the
user was not interested in the log file from the last run,
and thus did not extract it from the data logger and free up
its non-volatile disk space then after a couple of runs the
data logger has no more disk space to save new log files
too. This causes it to enter an error state and lose the data.
There was also a problem of the users starting the data
logger running but then remembering to free up the disk
space for the log file. When doing this after the data

logger had already started the user could accidently delete
the newly created log file from the controller causing it to
enter an error state when it tried to save the data. Both of
these issues are being addressed, firstly with a function in
the Initialise case that checks to see how many log files
are currently being stored on the data logger and deletes
all but the newest ones, ensuring that there is enough
space for new data to be saved. More thorough error
handling is also being added in to recover from the error
caused by the user accidently deleting the current log file
by recreating a new file to dump the data to.

It is also desirable to have the data logger integrated
with the existing EPICS control system [9] being used on
MICE. Due to the limited RAM and processor time on the
data logger’s NI 9012 controller adding on the EPICS
Server support software module that is available would
have meant losing some vital buffering capacity. Because
of this it was decided to make use of the on-board RS232
port. A simple serial protocol is being created using the
LabVIEW VISA library [10] to allow EPICS IOCs to
send values for the configurable parameters and start/stop
signals. The data logger will in turn be able to send back
information on what case it is currently running and any
errors that have occurred.

CONCLUSION
This Data Logger system was successful in its purpose.

The high specification analog acquisition hardware
coupled with the FPGA chassis was able to give the high
levels of synchronisation needed for this task. The
limitations and difficulties of the system are being
addressed within the scope of the future work to create a
more robust tool that will be copied several times and is
planned to be used throughout the MICE experiment for
fault diagnosis.

REFERENCES
[1] MICE – Muon Ionization Cooling Experiment;

http://www.stfc.ac.uk/208.aspx
[2] cRIO – Compact Reconfigurable Input Output;

http://www.ni.com/compactrio/whatis/
[3] NI 9222 – 4 Channel Simultaneous analog inputs;

http://sine.ni.com/nips/cds/view/p/lang/en/nid/209142
[4] NI 9103 – 4 slot 3M gate chassis;

http://sine.ni.com/nips/cds/view/p/lang/en/nid/14158
[5] NI 9012 – Real-Time cRIO Controller;

http://sine.ni.com/nips/cds/view/p/lang/en/nid/14158
[6] Application Design Patterns: State Machines;

http://www.ni.com/white-paper/3024/en/
[7] Remote Panels in LabVIEW;

http://www.ni.com/white-paper/4791/en/
[8] The NI TDMS File Type; http://www.ni.com/white-

paper/3727/en/
[9] EPICS – Experimental Physics and Industrial Control

System; http://www.aps.anl.gov/epics
[10] NI VISA – National Instruments VISA;

http://www.ni.com/visa/

FPO012 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

184C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Data Acquisition

