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Abstract 
   The Muon Ionisation Cooling Experiment (MICE) 
being constructed at STFC’s Rutherford Appleton 
Laboratory will allow scientists to gain working 
experience of the design, construction and operation of a 
muon cooling channel. Among the key components are a 
number of superconducting solenoid and focus coil 
magnets specially designed for the MICE project and 
built by industrial partners. 

During testing it became apparent that fast, real-time 
logging of magnet performance before, during and after a 
quench was required to diagnose unexpected magnet 
behaviour. To this end a National Instruments Compact 
RIO (cRIO) data logger system was created, so that it was 
possible to see how the quench propagates through the 
magnet. The software was written in Real-Time 
LabVIEW and makes full use of the cRIO built-in FPGA 
to obtain synchronised, multi-channel data logging at 
rates of up to 10 kHz.  

This paper will explain the design and capabilities of 
the created system, how it has helped to better understand 
the internal behaviour of the magnets during a quench and 
additional development to allow simultaneous logging of 
multiple magnets and integration into the existing EPICS 
control system. 

MICE 
The Muon Ionisation Cooling Experiment (MICE) is an 

international collaboration of particle and accelerator 
physicists from Europe, the US and Japan. It seeks to 
design, build and operate a muon ionisation cooling 
channel, which given the consequence of the short muon 
lifetime that makes traditional cooling techniques 
inappropriate, is an essential technology for the design of 
a muon collider or neutrino factory[1]. 

The MICE cooling channel is of the same design as the 
cells proposed for the neutrino factory and consists of 3 
absorber coil modules with low density absorbers inside a 
focusing magnetic field and 2 RF-coupling coil modules. 
It is being built on a dedicated muon beam from the ISIS 
accelerator at Rutherford Appleton Laboratory. 

MAGNET QUENCHES 
Upon testing of the first Focus Coil magnet a series of 

unexpected magnet quenches were occurring meaning 
that the magnets were not able to reach the power levels 
specified by the design requirements.  

There was already a quench detection system installed, 
however, this was only designed for machine protection, 

shutting down the magnets in the event of a quench and 
was thus not designed to monitor all of the individual coil 
power levels. This also led to doubts as to whether there 
were actually magnet quenches occurring or if the quench 
detection system was not functioning correctly. To be able 
to properly address the unexpected quenches and prove 
the integrity of the quench detection system it was 
decided that a further diagnostic tool was required to 
monitor the power levels on each of the coils of the 
magnet so that the starting point of a quench could be 
determined and it’s propagation through the rest of the 
magnet analysed. 

The proposed solution to this was to create a standalone 
logging system that could capture magnet performance 
data before, during and after a quench. Because of the 
unexpected and unpredictable nature of the magnet 
quenches (testing could be running for hours before 
experiencing a quench) a system that simply logged the 
values from the magnets as soon as they were turned on 
would create far too much unnecessary data. Similarly, a 
system that started logging only once it had received the 
signal from the quench detector would miss vital 
information because data showing the quench starting to 
build up on the coils was needed for diagnosis of the 
fault. The solution to this was to have a system with a 
‘rolling capture window’. This ‘window’, or buffer, would 
temporarily save the data (i.e. in RAM) and once the 
buffer was full would start to overwrite the oldest data in 
the buffer with the newest. This would allow for the 
system to have already captured and be temporarily 
holding the data showing a voltage differential building 
up to a quench which, after receiving a signal from the 
quench detection system, it could amend with the data 
during and after a quench. 

THE DATA LOGGER SYSTEM 

Hardware 
CompactRIO is a reconfigurable embedded control and 

acquisition system. The CompactRIO system’s rugged 
hardware architecture includes I/O modules, a 
reconfigurable FPGA, and an embedded controller [2]. 

For this application it was decided that NI 9222 4 
channel C-series modules [3] were needed, despite the 
greater cost than other similar analog cards, to achieve the 
necessary sample rates. These cards can provide up to 500 
kS/s per channel at a 16-bit resolution. These were 
coupled with the NI 9103 chassis [4] which provides 4 C-
series module slots and the NI 9012 controller [5].  

Additional external electronics were needed to reduce 
the input voltages down to the +/- 10 Volts that the NI 
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9222 cards can handle. All of this was then packaged up 
into a 4U rack mountable crate.  

Software 
The cRIO is designed to be programmed using 

LabVIEW. LabVIEW is a graphical programming 
language created by National Instruments and is designed 
to make programming and configuration of their hardware 
quicker and simpler for the user.   

Specific modules of NI LabVIEW were needed for this 
project, the LabVIEW real-time and LabVIEW FPGA 
modules which allow for configuring the on-board FPGA 
chassis using the same tools and methods available in 
standard LabVIEW as well as programming the controller 
for real-time processing by providing a real-time 
operating system. 

The overall design of the software follows the State 
Machine architecture [6]. This is one of the fundamental 
architectures commonly used by LabVIEW programmers 
to implement complex decision-making algorithms that 
can be expressed as state diagrams or flowcharts. Each 
step of the program, e.g. Initialisation or buffering data, 
can be defined as a state of the system and depending on 
either user input or internal calculations will lead onto the 
next state. This allows for a very modular programming 
design where the processing is not fixed to a straight 
processing path but can quickly jump to different states 
when needed. This is achieved in LabVIEW by use of a 
case structure contained inside a while loop where each 
state of the program is a different case of the case 
structure as shown in Fig. 1. An enumerated value can 
then be used with a shift register to dictate which case or 
state will be processed next as a shift register will pass the 
data input to it to the next iteration of the while loop. Shift 
registers are also used to pass other data between the 
different cases of the case structure. 

The cases defined for this system are ‘Ready’ where the 
data logger is waiting for the user to input the desired 
values for each of the operational parameters; sample rate, 
pre-trigger sample time (the length of time the user wants 
to be able to see a quench building up), post-trigger 
sample time (the length of time the user wants to see after 
the quench detection signal has been received) and the 
name to be used for the next log file. The GUI (called 
Front Panel in LabVIEW) is accessed using the NI 
Remote Panel Server [7] which allows the user to access 
the front panel through a web browser. As nearly all PC 
operating systems come with a web browser as standard 
this removes the need for each computer wishing to 
access the data logger having a LabVIEW program or 
executable that can connect to the variables and allow 
configuration. 

Once the user has finished selecting these values and 
pressed the start button the program moves into the 
‘Initialise’ case in which the rolling buffer is created 
based on the sample rate, the pre-trigger sample time and 
the post-trigger sample time. It is also the where the log 
file (of TDMS data type [8]) is created and the FPGA 
configured.  

Next the data logger starts acquiring data and storing it 
to the buffer. The acquisition and some basic scaling of 
the data is done at the FPGA level as this provides the 
highly synchronised data acquisition and the high 
throughput needed to deal with 16 channels of data at up 
to 10kHz per channel. The output from the FPGA is 
stored in an internal FIFO buffer that can be accessed by 
the controller. Due to the limited space on this FPGA 
FIFO buffer the controller needs to read off the data in 
blocks of 300 samples and then store this in its own RAM 
buffer. This RAM buffer can provide for up to 450,000 
samples per channel before needing to overwrite old data. 
This case in the program is also when the data logger is 
waiting to receive a trigger from the quench detection 

Figure 1: Three of the cases from the Data Logger case structure to illustrate the State Machine architecture. 
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system. This trigger comes into channel 16 of the data 
logger and is captured in the same way as the coil data as 
this allows for it to be saved in the log file synchronised 
to the coil data. To detect the trigger from the quench 
detection system a separate process runs in parallel to the 
data buffering, checking channel 16 for the voltage 
change that indicates a trigger. Once the trigger is 
detected the data buffering process continues for the post-
trigger sample time specified by the user and then the 
program proceeds to the ‘Saving’ case. 

The ‘Saving’ case simply takes data off the buffer and 
saves it to the TDMS log file created in the Initialise case. 

Once all the data has been saved the program moves to 
the final case where it releases all of the resources it was 
using and deletes the DRAM buffer ready for the user to 
specify new values for the configurable parameters and 
start the logging process again. The users can then FTP 
into the non-volatile memory of the controller to access 
the log file.  

RESULTS 
The data logger was successfully used to prove the 

integrity of the quench detection system and to show that 
the magnets consistently, when pushed to the desired 
operational levels, suffer from a quench. When delivered 
the second focus coil magnet was tested under the same 
conditions, using the data logger as a diagnostic tool, and 
it did not suffer any unexpected issues proving that there 
was a fault in the first focus coil magnet. The first focus 
coil is now undergoing repairs to attempt to fix the issue. 

FUTURE WORK 
Due to the success of the data logger at helping to 

diagnose the fault in the focus coil it has been decided to 
integrate it into the final system as a permanent diagnostic 
tool. Other systems of the same design are being created 
to monitor other magnets on the machine as well. 

Because of the limited size of the RAM on the NI 9012 
controller care has to be taken to ensure that the desired 
buffer size does not exceed what the controller is capable 
of. Improvements are being made to limit the user to 
sample rates and sample times that the controller will be 
able to manage without error. Also, considerations are 
being made as to the added value of investing in a higher 
specification controller with more RAM available. 

Usage of the data logger also pointed out another 
weakness in its design that is being addressed. As the data 
logger is designed to be a standalone system it is up to the 
user to extract the desired log files from it when they want 
them. However, this revealed a potential flaw as if the 
user was not interested in the log file from the last run, 
and thus did not extract it from the data logger and free up 
its non-volatile disk space then after a couple of runs the 
data logger has no more disk space to save new log files 
too. This causes it to enter an error state and lose the data. 
There was also a problem of the users starting the data 
logger running but then remembering to free up the disk 
space for the log file. When doing this after the data 

logger had already started the user could accidently delete 
the newly created log file from the controller causing it to 
enter an error state when it tried to save the data. Both of 
these issues are being addressed, firstly with a function in 
the Initialise case that checks to see how many log files 
are currently being stored on the data logger and deletes 
all but the newest ones, ensuring that there is enough 
space for new data to be saved. More thorough error 
handling is also being added in to recover from the error 
caused by the user accidently deleting the current log file 
by recreating a new file to dump the data to. 

It is also desirable to have the data logger integrated 
with the existing EPICS control system [9] being used on 
MICE. Due to the limited RAM and processor time on the 
data logger’s NI 9012 controller adding on the EPICS 
Server support software module that is available would 
have meant losing some vital buffering capacity. Because 
of this it was decided to make use of the on-board RS232 
port. A simple serial protocol is being created using the 
LabVIEW VISA library [10] to allow EPICS IOCs to 
send values for the configurable parameters and start/stop 
signals. The data logger will in turn be able to send back 
information on what case it is currently running and any 
errors that have occurred.  

CONCLUSION 
This Data Logger system was successful in its purpose. 

The high specification analog acquisition hardware 
coupled with the FPGA chassis was able to give the high 
levels of synchronisation needed for this task. The 
limitations and difficulties of the system are being 
addressed within the scope of the future work to create a 
more robust tool that will be copied several times and is 
planned to be used throughout the MICE experiment for 
fault diagnosis. 
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