
MANAGING MULTIPLE FUNCTION GENERATORS FOR FAIR
S. Rauch, M. Thieme, R.C. Bär, GSI, Darmstadt, Germany

Abstract
In the FAIR control system, equipment which needs to be

controlled with ramped nominal values (e.g. power convert-
ers) is controlled by a standard front-end controller called
scalable control unit (SCU). An SCU combines a ComEx-
pressBoard with Intel CPU and an FPGA baseboard and
acts as bus-master on the SCU host-bus. Up to 12 function
generators can be implemented in slave-board FPGAs and
can be controlled from one SCU.
The real-time data supply for the generators demands a

special software/hardware approach. Direct control of the
generators with a FESA (front-end control software architec-
ture) class, running on an Intel Atom CPU with Linux, does
not meet the timing requirements. So an extra layer with an
LM32 soft-core CPU is added to the FPGA. Communication
between Linux and the LM32 is done via shared memory
and a circular buffer data structure. The LM32 supplies
the function generators with new parameter sets when it is
triggered by interrupts. This two-step approach decouples
the Linux CPU from the hard real-time requirements. For
synchronous start and coherent clocking of all function gen-
erators, special pins on the SCU backplane are being used
to avoid bus latencies.

DESCRIPTION OF SCU AND FG
The quadratic function generator (FG) which is described

in this paper, is a VDHL macro that runs in SCU bus slave
cards. At the moment, there are three slave cards with this
feature: DIOB (1 FG), ADDAC1 (2 FGs) and ADDAC2
(2 FGs). The DIOB card has an digital output with 32Bit for
the FG output value. The two ADDAC cards offer an analog
output with 16Bit resolution for the FGs. The slave cards are
controlled via the SCU bus from the Scalable Control Unit
(SCU). The SCU is a FPGA based controller equipped with
a ComExpress Board which runs linux. The communication
between FPGA and ComExpress Board is done via PCIe.
Inside the FPGA is a System-on-Chip (SoC) on basis of
a wishbone [1] crossbar with a PCIe-to-wishbone bridge
(wishbone master). The SCU bus is connected with a bridge
too, that acts as a wishbone slave. Part of the SoC is LM32
cluster with a configurable number of softcore processors
and shared memory (see Fig. 1). A separate crossbar is used
for message signaled interrupts (MSI). A interrupt master,
e.g. SCU bus bridge, sends MSIs to an interrupt slave. That
can be a interrupt queue of an LM32 or the PCIe bridge.
With the use of MSIs, the interrupt system is quiet flexible,
because every slave can address every interrupt target.
The SCU bus is a parallel bus with 12 slave slots. The

data and address lines are each 16Bit wide. Each slave has
a separate IRQ line. Inside the SCU bus bridge the IRQs are
translated into MSIs. The system should be used as an arbi-
trary function generator with 12 independent channels. Each

channel will control equipment that needs ramped nominal
values. That means for example power converters and Direct
Digital Synthesis (DDS) systems. The FG is configured
with a set of data and interpolates then a predefined number
of output values. After the interpolation is started, the FG
waits for the next set of data that is provided by the linux
FESA class. A brief hardware description of the FG can be
found here [2]. In contrast to the older paper, a few things
had to be changed for the implementation. The data path
is now 64Bit wide and both parameters, the linear and the
quadratic one, can now be shifted in a 64Bit range.

FG Inside SCU
Other then for ramped power converters, the SCU will be

used to control DDS systems. This will be done with FIB
cards, which are supplied from the radio frequency group.
These FIB [3] cards are used as SCU slaves. But in there
current revision the are not able to run a FG macro in the
slaves. So a different solution had to be found. The same FG
macro as used in the slaves is put behind a wishbone interface
and connected to the crossbar of the SCU. The output of that
FG is connected to a special wishbone master, that splits the
32Bit output value from the FG into two 16Bit accesses to
the SCU bus. So the interpolation of the FG is done inside
the SCU, instead of inside the SCU slaves. Because this
modus uses a lot more bandwidth than the slave approach,
the SCU bus should only be used for sending FG values. The
FG macro with wishbone interface acts exactly like the FG
in the slaves, only the interface is different. For the software
layer they look identical.

Figure 1: SCU with two slaves.

DATA SUPPLY WITH REAL TIME
BOUNDARIES

The FG can be configured to interpolate in steps from 250
up to 32000. The sample frequency is configurable from
16 kHz up to 1MHz. If the FG should now sample with
1MHz for 250 steps that means the linux program has to
provide a new data set every 250 µs. This data rate is to high
for linux to be serviced reliably for 12 channels.

FPO017 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

196C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Hardware Technologies



IMPLEMENTATION WITH
LM32 AND MSI

As direct control of the FG macro from linux is not possi-
ble, another real time layer is inserted. One of these LM32s
is now used for configuring the FGs and supplying new data
when triggered by the FG. Because each of the LM32 soft-
cores has a dual port memory, that is accessible for the other
LM32s and the linux system via the PCIe bridge, communi-
cation is done via circular buffers in shared memory. The
software running on the LM32 is written in C and needs
no operating system. So the real time behavior is easy to
predict. The real time processing is done in a IRQ handler,
that supplies the FGs with data. The round trip time for each
interrupt from the source (FG macro) to the IRQ handler and
then back again is around 5µs. One SCU bus access is 300ns
long. With six SCU bus accesses needed for every parameter
set, that makes 18µs for the handling of each FG. With a
step width of 250 theoretically 13 FGs could be serviced.
In reality the smallest step width used, will be 1000. That
gives enough time for handling the 12 FGs needed.

For controlling the LM32 software, another IRQ handler
is used. Here the linux software generatesMSIs by writing to
LM32 interrupt queues. This works as a software interrupt
scheme.

FG OPERATION
After reset the LM32 software scans the SCU bus and

enumerates the FG macros found in the slave cards. In
addition Up to 12 FGs are supported. These virtual FG
devices are then presented to the FESA class. A virtual
device number (0-11) is stored in each FG to make it easer
to address the right FG, when an interrupt occurs. Each
virtual device has its own circular buffer, that is filled by
the FESA class and emptied by the IRQ handler. When the
buffer is empty, the sampling of the FG halts.
The software sends the first parameter set with the start

value to each FG. After that, the FGs can be started with
a broadcast write to the SCU bus or with a signal from a

timing event. Directly after the start, the FG send a data
request for the next parameter set. The signaling of the data
request is done with the IRQ feature of the SCU bus and the
MSI system of the SCU. Encoded in the MSI message is the
number of the slave card, that has triggered a data request
IRQ. Because there can be two FG macros in one slave card
and the slaves use a shared IRQ scheme, the handler has to
ask the slave, which macro has triggered the data request. It
then reads the virtual FG number, to select the right buffer
for the FG. Then the handler sends the next parameter set
from the buffer and acknowledges the IRQ.

PROJECT STATUS AND FUTURE WORK
The hardware implementation of the FG macro in both

modes (SCU slave/Wishbone slave) is done. A test program
exist under linux, that is able to start the FGs with arbitrary
ramp data supplied by a text file. The integration into FESA
is in progress.

A Data Aquisition (DAQ) system for the slaves is planned,
that can make use of the same infrastructure as the FG. Only
the direction of the data flow would be the other way around.
At the moment the data transfer between linux and the

LM32 runs in polling mode. The linux program constantly
tries to fill the circular buffer. This wastes lots of bandwidth.
It would be more effective, if the LM32 signals to the linux
program, that the buffer needs to be refilled. That can be
done with an interrupt to the PCIe bridge.

REFERENCES
[1] Wishbone B4: http://cdn.opencores.org/downloads/

wbspec_b4.pdf

[2] S. Rauch et al., “Improved Function Generator for Device
Control for the GSI Control System”, TUP006, http://
jacow.org/pc08/papers/tup006.pdf, PCaPAC08, Ljubl-
jana, Slovenia (2008).

[3] M. Kumm et al., “Realtime Communication Based on Optical
Fibers for the Control of Digital RF Components”, GSI
Scientific Report (2007).

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO017

Hardware Technologies

ISBN 978-3-95450-146-5

197 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


