
WEB BASED MACHINE STATUS DISPLAY FOR
SIAM PHOTON SOURCE

N. Suradet, C. Thamtong, C. Preecha, S. Klinkhieo, P. Klysubun
SLRI, 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand

Abstract
A new machine operation status broadcasting system

has been developed for Siam Photon Source (SPS), a 1.2
GeV synchrotron light source in Thailand. The system is
implemented using web-based interface, and broadcasts
the information over the SPS website, mobile application,
as well as local TV network within the SPS facility,
allowing users as well as technical personnel to easily
access a variety of information related to the machine via
web browsers and other mediums. The new system also
provides supporting message services for alarm, event
notification, and other operational necessities. In this
report, the design of web and mobile applications, which
are based on HTML5, CSS3, and adopts PHP, AJAX,
Bootstrap framework (for responsive design), jQuery,
High charts JS, Twitter widget, and others, will be
described. The details of the hardware and software
configurations, users requirements and satisfactions, as
well as suggestions on further improvements, will be
presented.

INTRODUCTION
The Siam Photon Source (SPS) is a synchrotron light

source operated by Synchrotron Light Research Institute
(SLRI), and is located in Nakhon Ratchasima, Thailand.
The first light was achieved back in December 2001. At
present, the machine is operating at 1.2 GeV in decay
mode with a maximum electron beam current of 150 mA.
Three insertion devices, a permanent magnet planar
undulator, a hybrid multipole wiggler, and a
superconducting magnet wavelength shifter, are currently
in operation, providing synchrotron radiation from
infrared to hard x-rays to synchrotron light users.

The original machine operation status broadcasting
system was developed back in 2000, providing the
operation status of the machine, for e.g. beam current,
beam lifetime, beam energy, to users, who can access the
provided information through the internal cable TV
system within the facility. Each display channel receives
the machine status data from a LabVIEW program
located on a computer server. Since this system was
available only for on-site users, another system was
developed in 2006 to provide the machine status
information via the internet. The fundamental language
used to create this web-based system was basic static
HTML. The displayed beam current and lifetime chart
was captured from a NI LabVIEW window.

This web-based system has two main disadvantages.
First, it consumes quite a bit of the network bandwidth
because the whole web page had to be constantly updated,
and the size of the chart image was quite large. Secondly,
the system cannot display the data in real-time. We found
it necessary to develop a new system that is more robust,
more responsive, and more accessible. The new system
has to meet the following requirements:
 The core system is based on web technology.
 The web layout is able to present the contents clearly

and accurately across multiple types of devices (PC,
mobile phones, tablets, etc.) with diverse display
resolutions.

 The data is constantly updated every 5 seconds, but
the network traffic must be kept low.

 The beam current and beam lifetime chart is
generated by the browser on the client side. The
displayed data can be exported to a CSV file.

 The system is capable of broadcasting notification
messages.

SOFTWARE ARCHITECTURE
The machine status data originates from a variety of

sources. These sources/hardwares are interconnected via
an assortment of interface standards (OPC, GPIB, RS-
232, etc.). A data logging program written with LabVIEW
and installed on an acquisition server is employed to
continuously gather all the machine data and log them
into a database. The logging interval is 5 seconds. Open
source database MySQL [1] was chosen for our purpose.
LabVIEW MySQL connector toolkit [2] allows
LabVIEW to communicate with MySQL (version 4.1 or
later) via the TCP/IP protocol. It is a part of the LAMP
(Linux-Apache-MySQL-PHP) platform that has to be
installed on the web server.

When the user opens the SPS machine status web page,
the browser on the client side will make a request for the
PHP webpage to the web server. The web server responds
by sending HTML, JavaScript, and CSS scripts to the
client for processing, so that the execution is performed
by the client browser. We use AJAX (Asynchronous
JavaScript And XML) [3,4] to help refresh the web page
for updating the data. AJAX runs a background operation
which extracts the data from the database in the
XML/JSON data format every 5 seconds. It updates the
data field of the web page without reloading the whole
page, thereby substantially reducing the traffic demand on
the network. Fig. 1 shows the architecture of the machine
status broadcasting system.

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO028

User Interfaces and Data Displays

ISBN 978-3-95450-146-5

213 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 1: Machine status broadcasting system architecture.

DESIGN AND CODING

We employ various web-based technologies and
frameworks to create the machine status webpage. These
tools, which help make the code simpler and more
efficient, are as follows.

Frontend Framework with Bootstrap
Regarding our aforementioned requirements that the

new system has to be able to display the machine
information correctly across all supported devices, and it
must be relatively easy to develop, we employ the open
source Bootstrap framework [5] to help manage the front-
end. The Bootstrap package includes Scaffolding, Base
CSS, Components, and JavaScript plug-ins. It handles
display duty across all the devices with multiple
resolutions, making the machine status webpage display-
responsive, as shown in Fig. 2.

Figure 2: Machine status webpage at different screen
resolutions. (Top left: 1280x1024, top right: 640x800, and
bottom: 1920x1080)

Asynchronous Communication with AJAX
AJAX (Asynchronous JavaScript And XML) is a tool

for creating fast and dynamic web pages. AJAX allows
web pages to be updated asynchronously by exchanging
small amounts of data with the server behind the scene.
This means that it is possible to update specific parts of a
web page without reloading the whole page, significantly
reducing traffic load placed on both the server and the
network.

Real-time Graph with Highcharts JS
The SPS beam current and beam lifetime chart which

shows a historical record over 24-hour period contains the
recorded values of the beam current, beam lifetime, beam
energy, and the associated timestamp. We use Highcharts
JS [6], which is a JavaScript framework for creating
charts. Its process is performed on the client side
(browser). A data buffer is created and stored in the
MySQL database along with the associated timestamp,
which is installed on the web server.

The data is extracted from this database through a PHP
query program. AJAX together with jQuery manage
refreshing of the chart, which is a JSON data format,
resulting in an auto-refresh real-time chart. The process is
illustrated in Fig. 3.

Figure 3: Software architecture of the auto-refresh real-
time beam current and lifetime graphs.

Notification Broadcasting with Twitter
Incorporating a notification broadcasting into the

system was deemed necessary from the beginning since it
would be the main channel facilitating the communication
from the control room to the users. For this we chose

FPO028 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

214C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Data Displays

Twitter [7], a social networking platform that allows one
to send short messages (less than 140 characters in length)
to followers. Twitter has a widget for displaying a
message on the website and also delivering push
notifications to a mobile device. The tool enables machine
operators to send crucial machine status updates out
instantaneously.

MOBILE APPLICATION
An iOS web application was written for iOS-based

devices. The web app can be installed from the Safari web
browser, and can be accessed later from the iOS home
page, as shown in Figure 4(a). The program simply
retrieves the machine data from the machine status
webpage. When the condition that the user agent is a
mobile device is detected, the system will display a
specialized frontend framework containing the Slidebars
[8] and a navigator menu, as shown in Figure 4(b). The
machine status display remains on Bootstrap as
mentioned earlier; however, the information is separated
into multiple pages to fit the screen resolution of the
mobile device, as shown in Figure 4(c).

Figure 4: Mobile application: (a) SPS machine status app
icon, (b) Slidebars navigator menu, and (c) SPS machine
status on mobile device.

HARDWARE CONFIGURATION
Both the data acquisition server and the web server are

based on two IBM System x3250 M4 servers having Intel
Xeon E3-1270 3.4GHz (8MB L3cache), 8GB of system
memory, 2xSATA drive of 250GB with RAID 1 (mirror)
configuration, and gigabit ethernet. The operating systems
are Windows 2008 Server and Ubuntu Linux,
respectively.

CONCLUSION
The new SPS machine status broadcasting system has

been in use for approximately 8 months since February
2014. The system is found to be robust, effective, and
user-friendly. Future plan includes making it available for
devices based on other platforms.

ACKNOWLEDGEMENT
The authors are thankful to all the members of

Accelerator Technology Division and Technical Support
teams for their support, constructive remarks, and
feedbacks.

REFERENCES
[1] MySQL website: http://www.mysql.com
[2] LabVIEW TCP/IP Connector for MySQL Data base,

https://decibel.ni.com/content/docs/DOC-10453
[3] AJAX website: http://www.w3schools.com/ajax
[4] Y. S. Cheng et al., “Upgrade the machine status

broadcast system by PHP framework”, THP113,
Proceedings of ICALEPPCS2009, Kobe, Japan
(2009), http://jacow.org/.

[5] Bootstrap website: http://getbootstrap.com
[6] High charts - Interactive JavaScript charts for your

web pages, http://www.highcharts.com
[7] Twitter website: https://twitter.com
[8] Slidebars website: http://plugins.adchsm.me/slidebars

Proceedings of PCaPAC2014, Karlsruhe, Germany FPO028

User Interfaces and Data Displays

ISBN 978-3-95450-146-5

215 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

