
COMMON DEVICE INTERFACE 2.0

P. Duval, H. Wu, DESY, Hamburg, Germany
J. Bobnar, Cosylab, Ljubljana, Slovenia

Abstract
The Common Device Interface (CDI) is a popular

device layer [1] in TINE control systems [2]. Indeed, a de
facto device server (more specifically a 'property server')
can be instantiated merely by supplying a hardware
address database, somewhat reminiscent of an epics IOC.
It has in fact become quite popular to do precisely this,
although the original design intent anticipated embedding
CDI as a hardware layer within a dedicated device server.
When control system client applications and central
services communicate directly to a CDI server, this places
the burden of providing useable, viewable data (and in an
efficient manner) squarely on CDI and its address
database. In its initial release variant, any modifications to
this hardware database needed to be made on the file
system used by the CDI device server (and only when the
CDI device server was not running). In this report we
shall describe some of the many new features of CDI
release 2.0, which have drawn on the user/developer
experience over the past eight years.

CDI AND TINE
Although the Common Device Interface (CDI) can be

used outside of the TINE control system it is nonetheless
strongly coupled to the TINE libraries as well as the TINE
application programmer’s interface (API) and the TINE
naming convention and hierarchy. It is worthwhile to
discuss some of these aspects in order to better understand
the discussion that follows.

TINE itself does not require any specific hardware
device layer in order to provide control system services.
On the other hand TINE is weakly coupled to CDI in that
specific CDI hooks are embedded in the TINE library.
This in turn allows a TINE device server to utilize
embedded CDI services for hardware access.

CDI Hardware Server
A very simple manifestation of embedded CDI services

is the so-called CDI hardware server, which is essentially
a generic TINE device server providing access to the
hardware devices contained in the CDI database. Such a
server provides no additional device control intelligence
beyond that which can be configured in the database.
Originally it was imagined that although the hardware
server would be a very useful tool for testing hardware,
developers would design device servers based on direct
data acquisition via embedded services within a single
framework. In practice, the hardware server itself has
become the mainstay of hardware access for most TINE
device servers. In most cases a device server with specific
control intelligence is designed as an effective middle

layer server communicating with a front-end CDI
hardware server. In many cases, however, client
applications communicate directly with CDI servers and
there is no additional device server in the picture at all!

At this juncture we should point out that the CDI
hardware server should properly be termed a property
server and not a device server. Control systems are
sometimes categorized into those which provide a
database-driven paradigm (such as EPICS [3]) or a
device-server paradigm (such as DOOCS [4] or TANGO
[5]). Although TINE falls into the device-server camp it
also supports property servers. Traditional device-servers
treat instances of equipment as named devices and these
devices have properties which one can access via the
device server. A property server on the other hand
considers services and information to be designated as
properties located on some host, and such a service
property will likely apply to a set of keywords.

The services a CDI server offers of course include bus
access properties, such as sending and receiving on a
hardware bus. For such properties, the keywords
correspond directly to named hardware addresses,
referred to as CDI devices. Other services include bus
and template information as well as database management
services.

CDI SPECIFICS
CDI operates on a plug-and-play basis, making use of

bus-plug interfaces to the device hardware. A bus plug is
a hardware specific shared library which encapsulates the
details of the hardware bus I/O behind the CDI API. The
CDI shared library is told which bus plug libraries to load
via a CDI manifest database.

A CDI address database provides the cross-reference
information necessary to instantiate the named hardware
devices that CDI will export. The use of CDI address
templates can greatly facilitate this instantiation. As a
database format, CDI uses comma-separated value (CSV)
files, which are easy to view in any text editor and fit
seamlessly into any spreadsheet application such as
Excel.

A CDI address database snippet is shown in Fig. 1.
Here one can see how templates make life easy.
Templates are defined by specifying the bus name
‘TEMPLATE’ and providing both the template name and
template field name separated by a colon. If a device
instance such as ‘PU01I’ specifies a template <BLM> in
its address parameters then it will automatically expand
into multiple CDI I/O devices given by instance name and
template field name separated by a dot. The bus itself in
this case is the in-house DESY bus SEDAC. The initial
entry gives the special bus name ‘FIELDBUS’ which

TCO207 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

144C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

provides a method for giving a name to the bus on line
SEDAC line 1, namely ‘BLMs’. Not shown in the
example is another special bus name BITFIELD which
can be used to define the elements of a TINE bitfield
which can be applied to read-back data.

Figure 1: CDI address database snippet.

The database snippet shown in Fig. 1 is simplified and
omits many optional columns which could be used to
specify other I/O instructions including data masks and
calibration rules. As noted above, a well-configured
database can often establish a CDI server which provides
finished, ready-to-use data, obviating the need to develop
any other device server. In the past, this was usually only
true when the targeted hardware was ‘simple’, i.e. where
slow data access was sufficient and multiple clients to the
CDI server could be tolerated.

With the advent of scheduling, asynchronous listeners,
and the asynchronous triggering from bus plugs found in
CDI 2.0, the number of cases where a CDI server alone is
sufficient for control purposes has greatly expanded. We
shall come to these topics in more detail below.

One further important detail concerning the property
server nature of a CDI server should be mentioned.
Namely the fields of the template devices alluded to
above are themselves registered as properties, whose
keyword lists consist of those instances making use of the
template. To continue with Fig. 1 for example, the CDI
server would also export a property ‘Mode’ and list all of
the PU01I, PU01O, etc. instances as keyword devices.
More importantly it would treat this property (referred to
as a CDI extended property) as a multi-channel array
(MCA) property, which would participate in the TINE
MCA contract coercion [6] used to provide efficient data
transfer, server to client. Underneath the hood, any call to
a CDI extended property maps to the corresponding full
CDI device name (‘instance.template-field’) and the bus
property ‘RECV.CLBR’, which translates into ‘receive on
the bus and apply any calibration rules’.

Asynchronous Listeners
If a call to a CDI server always ended up making a

synchronous bus i/o operation this could lead to bottle
necks and inefficiencies depending on the amount of data
and the read-back intervals involved. To this end, a CDI
server will recognize when a client establishes an

asynchronous contract and then establish a local
asynchronous static listener, which will regularly receive
updates for the requested device from the hardware and
report these results to the caller. In fact, when an
asynchronous listener is in play, any synchronous request
from a caller will return the most recently acquired data
without any additional hardware I/O. This of course does
not apply to SEND operations on the bus, but as most
server I/O tends to be read-backs this mechanism makes
the CDI server very efficient at servicing multiple clients.

A CDI server can now easily specify in its address
database which properties (or template fields) should have
an automatic listener applied at start time.

Scheduling
When an asynchronous listener is in place, then the

CDI library can itself monitor read-back values and signal
a data-change event. This is done by calling the TINE
scheduler and is referred to as scheduling a property. CDI
will generally monitor data at an interval provided in the
address database, although it can also react to
asynchronous events coming from the bus plug.
Scheduling is a good way to avoid latency and deliver
data to listening clients in a timely manner.

Local Histories and Alarms
To further the cause for creating a viable device server

(or rather, property server) merely by applying the proper
database settings, we note here that TINE local histories
of any designated CDI device can be easily incorporated
into the database. Raising alarms is another matter and
requires a separate TINE alarm watch database [2].
However, this latter task is hardly daunting.

Remote Database Access
One of most exciting features of CDI 2.0 is the ability

to remotely access and modify the database of a running
CDI server by making use of exported database
properties. Although reading the database is allowed by
anyone, writing to the database requires traversing TINE
security. Should a local database be updated, a backup is
made of the most recent database and a rollback to the
previous database is also easily available in CDI 2.0.

The ability to update a CDI database via the CDI server
itself simplifies matters to no end when one is dealing
with embedded or semi-embedded CDI servers on, say, a
PC104 card. In the old days, this typically required a
secure login/secure copy of the new database and a server
re-start.

If enabled, the CDI server can also be remotely ‘reset’,
whereby the wrapping TINE server unloads all CDI
libraries and returns the running server to its original
uninitialized state and then re-initializes.

CDI EDITOR

As seen above, a CDI database makes good use of CSV

files. Although an accomplished spreadsheet user might
be comfortable with this, working with detailed

Proceedings of PCaPAC2014, Karlsruhe, Germany TCO207

Control Systems

ISBN 978-3-95450-146-5

145 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Figure 2: Example of the CDI Editor. From the title bar one can see that the database was acquired directly from a
server called /PETRA/PEKICK-SO.CDI. The above view focuses on the device entries.

information in a large spreadsheet can be tedious and
error prone. To this end, a CDI editor is now available,
which shows various aspects within their contexts and,
most importantly, checks for consistency where it can.

As a CDI 2.0 server offers remote access to its
database, the CDI editor can either work with a local
database on the local file system or acquire the database
from any running CDI server.

The user can browse and edit in a clear, intuitive
manner all aspects of the database and then have the
option of updating to the targeted server if he has the
access rights to do so.

An example is shown in Fig. 2 above.

CDI DEPLOYMENT TOOL
Another issue which has surfaced over the past eight

years of CDI usage is that of distributed databases.
Namely, there are situations where not only is a real
device server necessary, but said device server needs to
acquire data from multiple, distributed, CDI hardware
servers, each containing instances of the same hardware
type. A simple modification to a template then involves
updating not one, but numerous CDI address databases
(not an enviable task, even making use of the CDI editor).

To simplify such operations the CDI 2.0 package also
features a CDI deployment tool. This utility is able to
generate the multiple CDI address files from a single
master address database. An additional requirement here

is that the master address database must have a column
labelled TARGET, which should contain the destination
CDI server address (in TINE /Context/Server notation) for
each hardware instance. The deployment tool is able to
then generate a set of database files on the local file
system in a directory structure based on the Context and
Server information provided. Or, it is able to make use of
the remote database access described above to push the
specific database to the targeted server.

CONCLUSION
CDI has reached a new level of maturity and continues

to be a major workhorse in TINE control systems. The
feature-set of release 2.0 makes CDI considerably more
versatile, and the ability to generate a hardware address
database is now vastly simplified through the CDI editor.

REFERENCES
[1] P. Duval and H. Wu, “Using the Common Device

Interface in TINE”, Proc. PCaPAC’06,
http://jacow.org/.

[2] TINE website: http://tine.desy.de/.
[3] EPICS website: http://www.aps.anl.gov/epics/.
[4] DOOCS website: http://doocs.desy.de/.
[5] TANGO website: http://www.tango-controls.org/.
[6] P. Duval and S. Herb, “The TINE Control System

Protocol: How to achieve high scalability and
performance”, Proc. PCaPAC’10, http://jacow.org/.

TCO207 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

146C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

