
SETUP OF A HISTORY STORAGE ENGINE BASED ON A

NON-RELATIONAL DATABASE AT ELSA

D. Proft , F. Frommberger, W. Hillert, ELSA, Bonn, Germany∗

Abstract

The electron stretcher facility ELSA provides a beam

of unpolarized and polarized electrons of up to 3.2 GeV

energy to external hadron physics experiments. Its in house

developed distributed computer control system is able to

provide real time beam diagnostics as well as steering tasks

in one homogeneous environment. Recently it was ported

from HP-UX running on three HP workstations to a single

Linux personal computer.

This upgrade to powerful PC hardware opened up the

way for the development of a new archive engine with a

noSQL database backend based on Hyptertable. The system

is capable of recording every parameter change at any given

time. Beside the visualization in a newly developed graphical

history data browser, the data can be exported to several

programs - for example a diff-like tool to compare and recall

settings of the accelerator.

This contribution will give details on recent improvements

of the control system and the setup of the history storage

engine.

INTRODUCTION

The main features of the ELSA accelerator control system

[1, 2] include a completely event based data handling model

and a separation of the core functionality (database and

event handling by the kernel) from userspace applications.

It combines steering tasks and real time beam diagnostics in

one homogeneous environment. A transparent design allows

access to the X windows-based graphical user interface from

any computer. An overview of the hard- and software layers

of the whole system is given in Figure 1, [3].

A key component of the control system is a kernel man-

aging a central shared memory database. The database is

separated into several parts, i.e. the resource base contain-

ing structural information about parameters like limits, max.

number of vector elements and the quantity’s physical unit.

The structural information is complemented by the online

database filled with actual parameter values, which are up-

dated continuously at runtime.

There are currently 14 827 parameters defined in the con-

trol system. These are grouped into controlled (≈ 4000),

measured (≈ 9000) and other parameters. Each group con-

sists of four different data types: analog values (represented

by floating point numbers), digital values (mostly switch-

ing values or integers), strings (character sequences) and

arbitrary byte sequences.

The update of controlled parameters occurs rather rarely,

and is mainly invoked by user interaction or automatic mea-

surement processes. On the other hand most measured

∗ proft@physik.uni-bonn.de

Figure 1: Hard- and software layers of the control system.

parameters are updated on a regular basis, either cycle-

synchronous (typically every 5 s) or with arbitrary rates up

to 10 Hz. Parameters with higher rates are accumulated in

vectors and transfered (also on a regular basis) with a slower

rate.

The data rate produced by 675 updates/s (on average) is

roughly 50 kB/s to 100 kB/s1. This results in a total volume

of ≈ 6.1 GB per day.

Primary goal of the newly developed archive engine is,

of course, to archive all these changes together with a time-

stamp, regardless of the type or source of the values. Second

goal is to keep the investment cost as low as possible. There-

fore the archive database should run on a regular desktop

computer with no special hardware needs. Here, a bottleneck

could be the access time, in which the data can be returned

back from the database. For best user experience access

times in the magnitude of few seconds are required.

DATABASE BACKEND

Hypertable is a non relational database with Google’s

Bigtable design which was chosen as the database backend.

It runs on top of several file systems, including distributed

ones (e.g. HDFS) and storage in the local file system. The

instances of the main server, called RangeServer, can be dis-

tributed among different machines with one Master process

for administration.

1 50 kB/s during maintenance, 100 kB/s during usual operation

WPO003 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

34C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems



Hypertable uses a key-value based data storage model.

The key itself is made up by a row key string, a high resolu-

tion nanosecond timestamp, a column family:qualifier-pair

and control flags. The timestamp can be understood in two

ways: First as a simple timestamp either assigned automat-

ically upon creation or given by the user and second as a

revision of the key-value row. The column family2 represents

the column name in relational databases. These fields are

assigned to the archive engine fields as shown in Table 1.3

Table 1: Hypertable⇔

hypertable archive engine

row key parameter name

column fixed column family name “data”

timestamp recorded parameter change date

value parameter value

The key-value pairs are sorted by their key and stored

inside the memory in CellCaches or they are written to com-

pressed CellStores residing on disk. The data on disk is

supplemented by a block index, to increase search perfor-

mance.

This type of data storage directly implies the optimal way

of data readout: Because the data is sorted by the key (i.e.

parameter and timestamp) it is most efficient to read out a

big time frame for a single parameter. This is exactly what

most of the history-tools (and especially the history-browser

application) require, so it matches the requirements for the

database backend.

Currently the hypertable database (one Master and one

RangeServer) is running on the same machine as the control

system. It is equipped with an Intel i7 CPU with six physical

cores, 40 GB RAM4 and two desktop harddrives with each

3000 GB capacity configured as a raid1 (no distributed file

system is used at the moment).

INTEGRATION INTO THE EVENT

SYSTEM

The interface to the database backend is set up on the

control host. The shared memory database running here has

a consistent view of all parameters and their current values.

Upon each parameter update, the event system is triggered to

inform other applications of the value change. At this point

a new hook was installed to communicate with the history

database.

For the implementation, emphasis was put on the strict

separation of the control system’s core and the database com-

munication. Therefore a new shared memory database was

2 Because only one column is used for the historic data, this feature is

effectively unused.
3 The parameter name used as the row key is suffixed by a date based

string for faster indexed searches and due to a maximum revision count

in hypertable.
4 Before a recent upgrade of the control system to 64 bit the usable RAM

of the database was limited to 2 GB. All further performance analysis

has been performed with this limitation present.

Figure 2: Graphical user interface: parameter history

browser showing the correlation between set point value

and corresponding measurement value.

introduced to act as an intermediate database. Whenever a

parameter gets updated, a nanosecond timestamp with the

current time is created and stored in the shared memory

database along with the parameter’s name and value. Nu-

merical values (integers and floating point values) are stored

in their binary representation with 32 bit size5 and strings

as zero terminated character arrays.

The isolation from the control system core is achieved by

using only one application with access to both systems. Its

purpose is to flush the contents of the intermediate database

every three seconds and insert the appropriate records into

the hypertable database. Each new record is filtered by a

regular expression during the insert to filter away unneeded

parameters by name to save storage size.

TOOLS

For interaction with the history data a couple of tools have

been developed. The most important one is a graphical user

interface, which can be directly invoked from the accelera-

tors menu system (see Figure 2). Within the GUI, one can

ask for values of multiple parameters and have them plotted

versus time. The application is based on QCustomPlot, a

Qt plotting widget with integrated support for easy panning

and zooming by mouse.

Beside simple tools for extraction of data to ASCII files

and plotting in gnuplot there are two important applications:

cshdiff

This application creates two snapshots of the values of

all parameters at two given dates and afterwards reports any

differences between them. The number of parameters can be

filtered by type (e.g. controlled or measured parameters) and

by name (regular expression). That way, a comparison of two

different machine states is easily achieved. This information

may then be used to restore the accelerator to a previous

state.

5 Accordingly, vectorial parameters are stored as n × 32 bit values.

Archive Engine Field Assignment

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO003

Control Systems

ISBN 978-3-95450-146-5

35 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s



Figure 3: Parameter readout performance vs. number of

parameters read.

csplayback

This application is designed to be executed on a devel-

opment system running the control system. Instead of con-

necting the control system to process hosts, only a single

application (beside the crucial kernel applications) is run-

ning. It downloads all parameter values from the database

system for a given time range and feeds them back to the

development system. This allows a real time playback of

all accelerator parameters of any time range in the past6.

From the control systems point of view there is no differ-

ence in data handling in comparison to normal operation

with attached process hosts, because the same event- and

notification system is used.

The most important scenario where this feature can be

used is software development: On the development system

new software, for example measurement applications, can

be tested offline and no dedicated beam time is required.

PERFORMANCE

The most used feature of the archive engine is the his-

tory database browser. For maximum user experience a fast

readout and display of the data is required.

Figure 3 shows the basic readout performance of the

database system after 8 month of operation. Every data point

represents the throughput during readout of all values stored

in the database of one accelerator parameter. Dependent on

the update rate of each specific parameter, the total number

of values per parameter varies among 5 orders of magni-

tude. The data was collected in a random order during usual

system load, especially the collection of new data was not

interrupted.

Most of the parameters with only few data points (less

than 1 × 105) can be hold in cache, thus being accessible di-

rectly from the RAM. These queries can be executed at high

throughput and are located in the upper left region of figure 3.

If the data is not cached, the readout of small amounts of data

takes significantly longer due to an additional overhead by

6 since begin of the recording of course

I/O latency of the hard drives and on-the-fly decompression

of the data. The throughput increases with bigger amounts

of data being read, because the time needed for preparation

of the data is constant. On the other hand, parameter values

which are vectors (n-tuples of scalar values instead of single

scalar values) can only be read out by a lower rate due to I/O

bandwidth limitations.

Figure 4 shows the total time required for export versus

the number of values queried from the database. The readout

again was performed in a random order and takes less than

1.5 s for the readout of up to 10 000 values. Above that

point the throughput is dominated by the delay given by

I/O operations for reading the CellStores from disk and the

corresponding decompression.

Figure 4: Readout time vs. number of parameters read.

CONCLUSION

The possible uses of the archive engine overshoot the

simple recording and display of data: Now post-mortem

analysis of component failures are possible. One can find

correlations between different parameters - either controlled

or measured ones - and watch their evolution over time.

For that, the most important improvement introduced is the

graphical history browser application. It quickly became an

integral and vital part of the control system.

REFERENCES

[1] T. Götz, “Entwicklung und Inbetriebnahme eines verteil-

ten Rechnerkontrollsystems zur Steuerung der Elektronen-

Stretcher-Anlage ELSA, unter besonderer Berücksichtigung

der Anforderungen des Nachbeschleunigungsbetriebes bis

3.5 GeV”, PhD theses, University of Bonn, 1995

[2] M. Picard, “Entwurf, Entwicklung und Inbetriebnahme eines

verteilten Rechnerkontrollsystems für die Elektronen-Stretcher-

Anlage ELSA, unter besonderer Berücksichtigung der Extrak-

tion im Nachbeschleunigungsbetrieb bis 3.5 GeV”, PhD theses,

University of Bonn, 1995

[3] D. Proft, “The accelerator control system at ELSA”, IPAC2013,

Shanghai, May 2013, THPEA002, p. 3149.

WPO003 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

36C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems


