
FESA3 INTEGRATION IN GSI FOR FAIR

S. Matthies, H. Bräuning, A. Schwinn, GSI, Darmstadt, Germany

S. Deghaye, CERN, Geneva, Switzerland

Abstract
GSI decided to use FESA (Front-End Software

Architecture) as the front-end software tool kit for the

FAIR accelerator complex. FESA was originally

developed at CERN. Since 2010 FESA3, a revised

version of FESA, is developed in the frame of an

international collaboration between CERN and GSI.

During development of FESA3 emphasis was placed on

the possibility of flexible customization for different

environments and to provide site-specific extensions to

allow adaptation for the contributors. GSI is the first

institute different than CERN to integrate FESA3 into its

control system environment. Some of the necessary

preparations have already been performed to establish

FESA3 at GSI. Examples are RPM packaging for

multiple installations, support for site-specific properties

and data types, first integration of the White Rabbit based

timing system, etc.. Further developments such as e.g.

integration of a site-specific database or the full

integration of GSI's beam process concept for FAIR will

follow.

INTRODUCTION

GSI's FAIR [1] project is a challenge and a chance to

establish a revised control system solution. A couple of

years ago it was decided to develop the main parts of the

future control system for FAIR (such as FESA, LSA [2]

and the middleware CMW [3]) in the frame of an

international collaboration with CERN.

This paper gives an overview of how the FESA3

framework is extended to suit into the future FAIR

control system environment.

MODULARITY OF FESA3

To establish the FESA framework on sites different

than CERN the main focus during development of FESA3

was modularity and extensibility.

Modularity is achieved by clear separation of its

components and involved technologies into core- and site-

specific packages. Extensibility of the FESA3 framework

is ensured by the possibility to provide site-specific

extensions to the core packages. This involves the FESA3

framework packages as well as the components of the

FESA3 plug-in for the integrated development

environment Eclipse.

In general the core packages contain the common code

base that is used by both participating sites. The common

part provides the interfaces, (abstract) base classes as well

as the functionality that does not have to be extended.

The FESA3 framework combines the usage of different

technologies and programming languages such as XML,

XSLT, Python, C++ and JAVA.

The site-specific components extend the common part

by providing the functionality required only by the

implementing site. This is realized by using software

design concepts such as inversion of control and

inheritance, depending on the technology used. Figure 1

gives an overview of the main FESA3 framework

components. The extension packages are marked by “-

EXT” which stands for either CERN or GSI. Accordingly

a similar structure is realized for the parts that constitute

the JAVA based FESA3 Eclipse plug-in.

SITE-SPECIFIC FESA FEATURES

The FESA3 installation at GSI has several site-specific

features and extensions.

Standard Properties

To provide a common interface of FESA3 based

equipment software to the application layer, an elaborated

set of standard properties is defined at GSI. Standard

properties are common properties that each accelerator

device should provide to the application layer. Typical

examples are properties such as Status, Power, Init or

Version. Site-specific properties may be coupled to site-

specific data field types. The properties as well as their

data fields are pre-defined in the site-specific template for

new FESA3 equipment software. For operational FESA

based equipment software to be used within the FAIR

control system environment these properties must be

implemented by the FESA equipment software developer.

GSI's FESA development guideline outlines this and the

other issues to be considered when developing productive

FESA3 based equipment software for operation of the

FAIR accelerator complex.

Figure 1: FESA3 Framework Components.

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO006

Control Systems

ISBN 978-3-95450-146-5

43 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

FAIR Timing Integration

For FAIR a newly build timing system will be used [4].

To be able to react to timing events sent via the new

timing network FESA3 provides a prototype integration

of the FAIR timing system. This is achieved by providing

an additional timing event source within the site-specific

part of the FESA core framework. The timing event

source analyses the incoming FAIR timing events and

triggers the execution of FESA real-time actions. FESA

real-time actions are basically threads that can be run in

“real-time” and do not directly interact with a client.

Multiplexing: GSI's Beam Process Concept

For operating the FAIR accelerator complex, when

several experiments are supported with different beams

on a pulse to pulse basis, a staged multiplexing concept

will be used. The basic element for describing the actions

in the machines is the Beam Process. A Beam Process is

an uninterruptible activity like a beam injection,

acceleration or beam transfer. Beam Processes are

combined into Sequences. A Sequence may represent, for

example, a synchrotron accelerator cycle, a set of beam

manipulations in a storage ring or the transfer of a beam

from one machine to another.

Depending on its functionality, a device may either

have different settings for each Beam Process or have one

setting for each Sequence, which means it behaves

identically for each Beam Process in the Sequence.

This concept has an impact on the existing FESA3

implementation of multiplexing that is tailored to what

was needed so far. Since there was no huge difference

between CERN's and GSI's requirements the

implementation was located in the core part of the FESA

framework. To realize GSI's concept of multiplexing

using Beam Processes or Sequences in accordance to

CERN's multiplexing concept the implementation of the

cycle selectors for both involved sites must be moved to

the site-specific part.

FESA3 INSTALLATION

One of the specific requirements of GSI is to support

installations of FESA3 on multiple Scientific Linux

machines. Examples are the servers of GSI's local

development cluster, the control system installation for

the Proton Linac Source that will be constructed at

CEA[5] in Saclay, France or the development

environment for the Slovenian in-kind contribution for

FAIR. This is in contrast to CERN's need to provide a

FESA3 installation within a single development

environment for local FESA developers only.

To easily support multiple FESA3 installations on

various Linux machines it was decided at GSI to provide

FESA3 as well as the required CMW middleware and

other site-specific 3rd-party libraries as an RPM (RPM

Package Manager) based installation. This allows

distributing FESA3 in a comparably simple way. The

main advantage is that RPM packaging enables consistent

and repeatable FESA3 installations on different Linux

machines in varying environments.

This involves the realization of an installation directory

structure that allows more than one FESA3 version in

parallel. The chosen installation directory structure for

FESA3 is to the greatest possible extent in accordance to

a standard Linux directory structure.

EXTENSION OF THE USER INTERFACE:

FESA3 ECLIPSE PLUG-IN

Since 2010 the graphical user interface for FESA3 is

directly integrated in the development environment

Eclipse as a plug-in. This allows to outline the basic

development workflow of FESA3 based equipment

software. The FESA3 development workflow for FESA

equipment software developers involves steps such as

• creating / editing the FESA class design which is

formally an XML document to outline the

interfaces to the client and the equipment

• implementing automatically generated C++

source code frames which are based on the class

design

• compiling the source code and linking the

libraries

• creating device instances which are formally

described in XML documents

• synchronizing the source code with a software

repository such as SVN

• deploying the resulting software, configuration

files and start scripts locally and remote on front-

end computers

• testing the results locally and remote.

Figure 2 gives a basic overview of the typical

development workflow for FESA equipment software.

Figure 2: FESA Development Workflow.

WPO006 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

44C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

Control Systems

The integrated development environment Eclipse

provides a solid base for such differing steps including the

possibility for custom enhancements and extensions.

So far site-specific characteristics that affect the

graphical user interface such as

• different FESA framework installation locations

• support of 32- and 64-bit CPU architectures

• an extensive and configurable delivery process

and structure

• an extended and custom-tailored FESA test tool

• a differing SVN repository layout

• a different set of Eclipse cheat sheets to illustrate

the recommended FESA software development

workflow and provide direct access to further

information

• varying automatically generated Make targets

• site-specific expert settings to help ease and

speed up the development workflow itself

• a different FESA database environment

have been identified and integrated.

The design involved providing the possibility to extend

the core parts by specific parts using software design

concepts such as interface-based programming and

inheritance. Wherever possible the varying site-specific

parts are kept configurable. In addition, the missing

flexibility concerning the SVN repository layout or the

site-specific database integration is ensured by providing

a set of specific JAVA packages.

TESTING IT ALL: THE CRYRING

The Swedish contribution to the FAIR project

“CRYRING” serves as an early test system for the first

assembly of FAIR's control system. The assembly is

currently planned for the end of 2014. The intention is to

couple the control system components LSA, CMW and

FESA3 for operation in combination with a new FAIR

timing system at GSI.

The commissioning of the CRYRING is the first time

that the future control system components interact. The

intention is to find out how the different parts add up with

all the other components.

For this first assembly FESA3 based equipment

software is developed at GSI by software developers and

equipment specialists in different groups. As more and

more developers use the FESA3 framework to produce

operational equipment software the issues that require

improvement can be identified.

COLLABORATION

The collaborative approach of developing the FESA3

framework is beneficial for all participating sites.

Collaboration has its advantages for all intents and

purposes when it comes to the integration of new

concepts and ideas, improvements or the implementation

of bug fixes.

However software development in collaboration

increases the complexity of the whole development

workflow itself. Particular care must be taken when

introducing changes that certainly will affect the

requirements of the other site. Mutual coordination on a

regular basis is essential to keep both participating sites

informed and up to date.

CONCLUSION

Since starting the collaborative development of FESA3

in 2010 several challenges have been mastered to

establish FESA3 on a site different than CERN. These

efforts not only include the technical issues mentioned in

this paper but also constituting a development

environment that involves comprehensive information

and documentation for FESA3 equipment software

developers.

In the past few years it has been shown that the flexible

and modular approach of FESA3 supports the adaptation

to different sites and environments.

The essential parts of the FESA3 framework have been

established up to now. For the future several issues

remain to improve the stability and usability of the

FESA3 software at the involved sites.

REFERENCES

[1] FAIR website: http://www.fair-center.de

[2] J. Fitzek et al., “Settings Management within the

FAIR Control System based on the CERN LSA

Framework”, WEPL008, PCaPAC’10,

http://www.jacow.org

[3] V. Rapp et al., “Controls middleware for FAIR”,

WCO102, PCaPAC’14, http://www.jacow.org

[4] M. Kreider et al., “Launching the FAIR Timing

System with CRYRING”, TCO304, PCaPAC’14,

http://www.jacow.org

[5] CEA website: http://www.cea.fr/english-portal

Proceedings of PCaPAC2014, Karlsruhe, Germany WPO006

Control Systems

ISBN 978-3-95450-146-5

45 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

